Introduction to Pattern Recognition and Data Mining

Lecture 3: Parameter Estimation

Instructor:  Dr. Giovanni Seni

Department of Computer Engineering
Santa Clara University

Overview

« Introduction
— Statistical inference
— Estimator’s bias and variance
* Maximum Likelihood (ML) estimation

— Binomial distribution
— Normal distribution
— Simple linear regression

« Bayesian estimation
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Introduction
Statistical Inference

« Bayesian classifier
P(w) Bayesian
s st
» Dual role of probability and statistical inference

Probability

Statistical Inference
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Introduction
Statistical Inference (2)

« Estimation of priors is simple
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Introduction
Statistical Inference (3)

» Suppose D contains n samples x,,..., x,
— Assume ¢ separate problems
* Premise 1—/.i.d.

— Samples have been drawn at random according to p(x) — the
model

— Samples are independent

* Premise 2 — known parametric form

— p(x|6) is determined uniquely by a parameter vector 6
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Introduction
Statistical Inference (4)

« Probability of observed data arising under an implicitly
assumed model M

p(D|0, M) = l:[lp(xiw, M)

— @ are the parameters of the model

— when regarded as a function of 4, it is called the likelihood L(8|D)

* We use p(D|6 M) to decide how realistic the assumed
model is

— Reject/change model if the likelihood is low
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Introduction
Statistical Inference (5)

« Let § be an estimator of a @

- 6 is arandom variable, with different values arising as different
samples are drawn (e.g., by repeatedly subsampling original data
set)

* Measures of quality

- Bias() = £(0) — 0:
« reflects any systematic error in our prediction
— Var() = e(6 — £(9))?:

« measures how much our estimates will vary across different data sets
(sensitivity to particular training data set)

Maximum-Likelihood Estimate

eML
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+ @ that maximizes L(0|D)

— value of ¢ that best agrees with or supports the observed training
samples

» Often more convenient to work in log domain /(0 |D)

« Assuming a well-behaved, differentiable function

1(0) = z In p(z,]0)

6 = arg max (6| D)
0

Solve

Vol =5 Vylnp(z;]0)
i=1
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Maximum-Likelihood Estimate
Example

* Assumed model: p(x|6) ~N(6, o)
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Maximum-Likelihood Estimate
Binomial Distribution

* Assumed model: P(x|§) =0*(1- 6~ ; x=10,1

* Scenario: customers at a supermarket either purchase or don’t

purchase milk; @ is the probability that milk is purchased by a random
customer

LO|zy, ..., zn) = H 071 =)' = g1 — o)
where r is number among n sample customers who bought milk

1(0) =rInf+ (n—r)In(l —0)

B0 =5-() =0 = b ="
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Maximum-Likelihood Estimate
Normal Density — Unknown p

» Consider a single point x;

1 -1
—5(z;—0)'S " (z;—0
($4|9) (2r "/2|E\1/2 €2

mp(zl0) = - 5[(2m)" S]] — 5z - 6)'Z"

Volnp(z;]0) = S~ (z; — 0)

Yz —

0)

For the full n
_ -1 _
log-likelihood: Vil = 21 S a;—0)=0
2
~ 1 n
= \fiyr =0=7>x; the sample mean!
i=1
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Maximum-Likelihood Estimate
Normal Density — Unknown p and

ISP
+ Univariate case p(;|6) =721—96 =)
6
Inp(z|0) = — 3In2n6s— %(,Z(Iz —6,)?
(;%(It - 01)
Volnp(z;|0) = {_ Lo (@t)? }
20, 26;

For the full

n
o _ _ Ao -
log-likelihood: g, = 0 = ;7(731 —01)=0 = 0=

n n b
al 1 i—01)% 0. | A2
%:0 $,§:0,2+§ (Iﬁg,li):(] = 0270"”
=1 i=1 2

3,2( = 01)?
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Maximum-Likelihood Estimate
Normal Density — Unknown p and X (2)

* Multivariate case...

e Ll X "
A== x; 2=—=D (% —a)(x— 1)
niig nig

[, is unbiased
X 1 1
E(f)=E| = (¥ +x,+...4x,) | == E(q +x, +...4x,)
n n

L E ) )+t ) =k ikt )

=u
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Maximum-Likelihood Estimate
Normal Density — Unknown p and X (3)

* G, is biased
. 1 A
£6)= «{;Z(x,- w)z}
i=1

=8E’Zl<x[—mz}—EBim—mz}

i=1

= but asymptotically unbiased!
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Maximum-Likelihood Estimate
Simple Linear Regression

* Assumed model: Y=a+bX+e

+ Data: {(x,y), (6,30}

+ e error term; a random variable assumed to be ~N(0, o),
we can write e = Y — (a+bX)

1 yl.—(a+bxl.) 2
oo efi e
plel )*m
* Likelihood

13 2
-—— ) (y,—(a+bx))’
_ n _ 1 202 Z i i
Lablo=[1re10)=7 e ‘
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Maximum-Likelihood Estimate
Simple Linear Regression (2)

* Log-likelihood:

1

l(a,h|:9):7%ln(27m'2)720_2 ’Z;:(yl,—(a+bxi))z

* To maximize I/(a,b|D) we need to minimize the sum of
squared differences

= Least Squares Method!

* LS method arises naturally from the choice of a Normal
distribution for the error term in the model
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Bayesian Estimation
Overview

» Frequentist view of probability:

— Probability is an objective property of the outside world
— Probability of an event as a “limiting proportion”
« Tossing a coin

« Customer buying milk
« Not one-off events
— Intrinsic variability lies in the data D
— @ is fixed but unknown
» Subjective (Bayesian) probability
— Probability is an individual belief that event will occur

— Subjective component given as a prior — initial belief event will
happen
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Bayesian Estimation
Overview (2)

» Subjective (Bayesian) probability
— 0 is arandom variable having a distribution of possible values
— i.e., Known prior density p(6)
« Broad and flat if we aren't’ very sure

— Information in D leads to a modification of this distribution to a
posterior density p(6/D)
+ Which, we hope, is sharply peaked about the true value of ¢
— Maximum a posteriori method (MAP)
« Pick the mode of the distribution

« ML estimator is MAP estimator for a uniform p(6)
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Bayesian Estimation
General Theory

* To obtain p(x|D)=p(x|w,D,) (to build our classifier)

« Compute \ p(x| D)= [ p(x{0) p(8] D)6

where form of p(x| ) is assumed known (as before)
and p(D) o p(D|6)x p(6)
N

likelihood parameter
prior
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Bayesian Estimation
Normal Density — Unknown p

* Assumed model: p(x|6) ~N(O

u

a?)

* Assumed prior: p(6,) ~N(t,, o;)

= p0,D)=a] | p(x,10,)p0,)

i=1
+ Easily shown that p(6,|D) ~N(u,, o} ) where
2 2
no, N o o
M, = [772] i, +———— #, ; where 1, is sample mean
no, +o no, +o

i.e., i, represents our best guess for 6, after observing » samples
Consider n —» «, 0,0, and g,>> o
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Bayesian Estimation
Normal Density — Unknown p (2)

and

2 2 5

2 9,0 . 2 O

0, =—H = limo, =—
no, +o > 2

* i.e., each additional observation decreases our uncertainty
about the true value of 0,

4 p(0,|D)

Bayesian Estimation
Normal Density — Unknown p (3)
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* We now can compute the class-conditional density
p(x| D)= fp(x 10,)p(0,1D)d0,

= [N(0,,0")N(u,,57)d0,
~N(u,,0" +0o,)

s i.e.,inp(x|§ ~N(0,, o) we set 0, = u, and replace o’ with

o’ +o;
— Treat u,=a i, +B- 4, asif it were the true mean

— Increase the known variance o to account for the additional
uncertainty resulting from our lack of exact knowledge of the mean
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Parameter Estimation
When ML and Bayesian Methods Differ?

» Equivalent in the asymptotic limit of infinite training data or
with a “flat” or uniform prior

» Computational complexity
— ML uses Differential Calculus or gradient search for 9
— B requires complex multidimensional integration
* Interpretability
— ML returns a single best model/parameter
— B gives a weighted average

» Confidence in prior information

— ML solution is of assumed parametric form... not necessarily so in
B approach
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