COEN 296 Topics in Computer Engineering

Introduction to Pattern Recognition and Data Mining

Instructor: Dr. Giovanni Seni
G.Seni@ieee.org

Department of Computer Engineering Santa Clara University

Overview

- · Course Goals & Syllabus
- · Pattern Recognition Example
 - Features
 - Classification
 - Generalization
 - System components
- · Related Fields: ML & DM
- · Design Cycle
- · Computational Complexity
- · The R Language

G.Seni - Q1/04

Course Goals

- · Convey excitement about an immensely useful field
 - Large increase in digital data (barcode scanners, e-commerce, etc.)
 - Moore's Law
- · Provide foundation for further study/research
- · Expose to real data
- · Introduce you to toolbox of methods

ni – Q1/04

an 6	Introduction				
Jan 13	Bayesian Decision Theory (2.1-2.6, 2.9)				
Jan 20	Parameter Estimation (3.1-3.4; see also 4.5 HMS)				
Jan 27	Linear Discriminant Functions (3.8.2, 5.1-5.8)				
Feb 3	Neural Networks (6.1-6.5)				
Feb 10	Neural Networks (6.6, 6.8)				
Feb 17	Clustering (10.6, 10.7; see also 9.3-9.6 HMS)				
Feb 24	Clustering (10.9)				
Mar 2	Non-metric: Association Rules (5.3.2 HMS)				
Mar 9	Text Retrieval (14.1-14.3 HMS)				

Introduction

Pattern Recognition

- "The act of taking in raw data and taking an 'action' based on the 'category' of the pattern "
- · Useful applications
 - Speech recognition
 - Word & Character Recognition
 - OCR (Optical Character Recognition)
 - Fingerprint identification ("biometrics")
 - DNA sequence identification ("bioinformatics")
 - Fraud detection
 - etc.

G.Seni - Q1/04

Introduction

Example

Sorting incoming Fish on a conveyor according to species using optical sensing

Introduction

Example

Feature Extraction

- Representation in which patterns that lead to same action are "close" to one another, yet "far" from those that demand a different action – i.e., discriminative
- Data reduction
- · Features to explore
 - Length, Lightness, Width, Number and shape of fins, Position of the mouth, etc...

G.Seni - Q1/04

Introduction

Example

- Initial *model*: sea bass is generally longer and lighter than salmon
 - Histograms on training samples

Seni – Q1/04

Introduction Example • Feature Space Fish $\longrightarrow \mathbf{X} = \begin{pmatrix} x_1 = lightness \\ x_2 = width \end{pmatrix}$ ***Substituting the search of the sea

Introduction

Related Disciplines

- Data Mining produce insight and understanding about the structure of <u>large observational</u> datasets – e.g.,
 - Find interesting relationships
 - Summarize the data in new ways that are understandable and actionable
- Machine Learning how to construct computer programs that automatically improve with experience (Mitchell)
 - Theory and algorithms
- Other Statistics, information theory, etc.

G.Seni - Q1/04

Introduction

Related Disciplines (2)

- · Data Mining Algorithm Components
 - Task: visualization, classification, clustering, regression, rule discovery
 - Structure: functional form of the model we are fitting to the data (e.g., linear, hierarchical)
 - Score function: goodness-of-fit function we are using to judge the quality of our fitted model on observed data
 - Search/optimization method: computational procedure used to find the maximum (or minimum) of the score function for a particular model
 - Data management technique: location and manner in which data is accessed

G.Seni - Q1/04

14

Introduction

Design Cycle

- Representative set of examples for training and testing the system
 - Can account for large part of the development cost
- · Data matrix:

 $n \times d$

ID	Age	Sex	Marital Status	Education	Income
248	54	Male	Married	High school	100000
249	??	Female	Married	High school	12000
250	29	Male	Married	Some college	23000

Introduction

Design Cycle (2)

- Feature choice useful for discriminating
 - Easy to extract
 - Invariant to irrelevant transformations
 - Insensitive to noise
- Type
 - Quantitative measured on a numerical scale
 - Categorical: nominal and ordinal (possessing a natural order)

.Seni – Q1/04

16

Introduction

Dimensionality (2)

- Practical paradox: beyond a certain point, the inclusion of additional features leads to worse performance
- · Source of difficulty
 - Wrong model
 - · E.g., Gaussian assumption
 - · Independence assumption
 - Inadequate number of training samples
 - · Distributions are not estimated accurately

Introduction

Computational Complexity

- Time/space considerations are of considerable practical importance at each stage
 - A table lookup might result in error-free recognition but impractical
- Scalability as a function of:
 - Number of features (d)
 - Number of patterns (n)
 - Cumber of classes (c)
- Learning vs. decision-making time

G.Seni – Q1/04

Introduction

The R Language

- An open source version of "S" a language and environment for data analysis
 - http://www.r-project.org/
 - Library provides many datasets
- Sample commands:

```
> x <- read.table("mydata.txt", header = TRUE)
> dim(x)
```

[1] 8192 18

> x[5, 7:9]

PS K 5 11 4 12

> hist(x[,7], breaks=100, xlab="Amount", main="P")

Introduction

The R Language (2)

- · Other useful functions:
 - Input/Output: read.table, read.delim, scan, write, write.table
 - Extraction: which, apply
 - Names: row.names, colnames, names
 - Plots: hist, plot, points, lines, pdf, dev.off
 - Error catching: stop, warning
 - Sizes: dim, nrow, ncol, length
 - Math: sum, mean, cor, log, max, min, range
 - Casts: as.matrix, as.vector, as.numeric
 - Type test: is.matrix, is.vector, is.numeric, is.data.frame
 - Ordering: sort, order
 - Help: ?command