COEN 296 Topics in Computer Engineering

Introduction to Pattern Recognition and Data Mining

Instructor: Dr. Giovanni Seni
G.Seni@ieee.org

Department of Computer Engineering
Santa Clara University

Overview

- Course Goals & Syllabus
- Pattern Recognition Example
 - Features
 - Classification
 - Generalization
 - System components
- Related Fields: ML & DM
- Design Cycle
- Computational Complexity
- The R Language

Course Goals

- Convey excitement about an immensely useful field
 - Large increase in digital data (barcode scanners, e-commerce, etc.)
 - Moore’s Law
- Provide foundation for further study/research
- Expose to real data
- Introduce you to toolbox of methods

Syllabus

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 6</td>
<td>Introduction</td>
</tr>
<tr>
<td>Jan 13</td>
<td>Bayesian Decision Theory (2.1-2.6, 2.9)</td>
</tr>
<tr>
<td>Jan 20</td>
<td>Parameter Estimation (3.1-3.4; see also 4.5 HMS)</td>
</tr>
<tr>
<td>Jan 27</td>
<td>Linear Discriminant Functions (3.8.2, 5.1-5.8)</td>
</tr>
<tr>
<td>Feb 3</td>
<td>Neural Networks (6.1-6.5)</td>
</tr>
<tr>
<td>Feb 10</td>
<td>Neural Networks (6.6, 6.8)</td>
</tr>
<tr>
<td>Feb 17</td>
<td>Clustering (10.6, 10.7; see also 9.3-9.6 HMS)</td>
</tr>
<tr>
<td>Feb 24</td>
<td>Clustering (10.9)</td>
</tr>
<tr>
<td>Mar 2</td>
<td>Non-metric: Association Rules (5.3.2 HMS)</td>
</tr>
<tr>
<td>Mar 9</td>
<td>Text Retrieval (14.1-14.3 HMS)</td>
</tr>
</tbody>
</table>
Introduction
Pattern Recognition

- “The act of taking in raw data and taking an ‘action’ based on the ‘category’ of the pattern ”

- Useful applications
 - Speech recognition
 - Word & Character Recognition
 - OCR (Optical Character Recognition)
 - Fingerprint identification ("biometrics")
 - DNA sequence identification ("bioinformatics")
 - Fraud detection
 - etc.

Introduction
Example

- Sorting incoming Fish on a conveyor according to species using optical sensing

 - category-1: sea bass
 - category-2: salmon

Introduction
Example

- Feature Extraction
 - Representation in which patterns that lead to same action are “close” to one another, yet “far” from those that demand a different action – i.e., discriminative
 - Data reduction

- Features to explore
 - Length, Lightness, Width, Number and shape of fins, Position of the mouth, etc…

Table

<table>
<thead>
<tr>
<th>ID</th>
<th>Class</th>
<th>length</th>
<th>lightness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7.8</td>
<td>3.1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>19.1</td>
<td>7.9</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5.6</td>
<td>4.2</td>
</tr>
</tbody>
</table>
• Feature Space

\[
\text{Fish} \leftrightarrow X = \begin{cases}
 x_1 = \text{lightness} \\
 x_2 = \text{width}
\end{cases}
\]

• Classification
 - Separate feature space into regions corresponding to the classes
 - The separating boundary is called the decision boundary
 - Perfect classification is often impossible… use probability framework
 - Easy to incorporate “priors” and misclassification “costs”

• Generalization
 - Ability to correctly classify novel input
 - Tradeoff between decision model complexity and generalization performance

• Sensing – converts physical inputs into signal data
 - Bandwidth, resolution, sensitivity, distortion of transducer imposes limitations on system
• Segmentation - isolates objects from background or other objects
• Post-processing – account for “context” and cost of errors

Introduction Example

Pattern Recognition System

input → sensing → segmentation → feature extraction → decision → Post-processing → classification
Introduction

Related Disciplines

- **Data Mining** – produce insight and understanding about the structure of large observational datasets – e.g.,
 - Find interesting relationships
 - Summarize the data in new ways that are understandable and actionable

- **Machine Learning** – how to construct computer programs that automatically improve with experience (Mitchell)
 - Theory and algorithms

- **Other** – Statistics, information theory, etc.

Introduction

Design Cycle

- **Representative set of examples for training and testing the system**
 - Can account for large part of the development cost

- **Data matrix:**

<table>
<thead>
<tr>
<th>ID</th>
<th>Age</th>
<th>Sex</th>
<th>Marital Status</th>
<th>Education</th>
<th>Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>248</td>
<td>54</td>
<td>Male</td>
<td>Married</td>
<td>High school</td>
<td>100000</td>
</tr>
<tr>
<td>249</td>
<td>??</td>
<td>Female</td>
<td>Married</td>
<td>High school</td>
<td>12000</td>
</tr>
<tr>
<td>250</td>
<td>29</td>
<td>Male</td>
<td>Married</td>
<td>Some college</td>
<td>23000</td>
</tr>
</tbody>
</table>

| n × d |

Introduction

Design Cycle (2)

- **Feature choice** – useful for discriminating
 - Easy to extract
 - Invariant to irrelevant transformations
 - Insensitive to noise

- **Type**
 - Quantitative – measured on a numerical scale
 - Categorical: nominal and ordinal (possessing a natural order)

- **Data Mining Algorithm Components**
 - Task: visualization, classification, clustering, regression, rule discovery
 - Structure: functional form of the model we are fitting to the data (e.g., linear, hierarchical)
 - Score function: goodness-of-fit function we are using to judge the quality of our fitted model on observed data
 - Search/optimization method: computational procedure used to find the maximum (or minimum) of the score function for a particular model
 - Data management technique: location and manner in which data is accessed
Introduction

Design Cycle (3)

- **Predictive Modeling** – the value of one variable is predicted from the known values of other variables (classification, regression)
 - E.g., a nonlinear model \(Y = aX^2 + bx + c \)

- **Descriptive Modeling** – clustering and segmentation, dependency modeling, probability density estimation

Design Cycle (4)

- **Training** – using training patterns to learn or estimate the parameters of the model (supervised or unsupervised)
 - Score Function: quantifies how well model fits a given data set
 - E.g., likelihood, sum of square errors, misclassification rate
 - Optimization (or Search) Method: determine the parameter values that achieve a minimum (or maximum) of the score function
 - E.g., gradient descent

Design Cycle (5)

- **Evaluation** – measure performance and adjust components appropriately
- **Train vs. Test Error**
 - Overfitting
 - Bias-variance tradeoff

- Classification accuracy depends upon the dimensionality and the amount of training data
 - Theoretically, error rate can be reduced by introducing new, independent features
 - Need features that help separate the class pairs most frequently confused (e.g., distance between class means)
Introduction

Dimensionality (2)

- Practical *paradox*: beyond a certain point, the inclusion of additional features leads to worse performance
- Source of difficulty
 - Wrong model
 - E.g., Gaussian assumption
 - Independence assumption
 - Inadequate number of training samples
 - Distributions are not estimated accurately

Introduction

Computational Complexity

- Time/space considerations are of considerable practical importance at each stage
 - A table lookup might result in error-free recognition but impractical
- Scalability – as a function of:
 - Number of features (d)
 - Number of patterns (n)
 - Cumber of classes (c)
- Learning vs. decision-making time

Introduction

The R Language

- An open source version of “S” – a language and environment for data analysis
 - http://www.r-project.org/
 - Library provides many datasets
- Sample commands:
  ```r
  > x <- read.table("mydata.txt", header = TRUE)
  > dim(x)
  [1] 8192   18
  > x[5, 7:9]
  P  S  K
  5 11 4 12
  > hist(x[,7], breaks=100, xlab="Amount", main="P")
  ```

Introduction

The R Language (2)

- Other useful functions:
 - Input/Output: read.table, read.delim, scan, write, write.table
 - Extraction: which, apply
 - Names: row.names, colnames, names
 - Plots: hist, plot, points, lines, pdf, dev.off
 - Error catching: stop, warning
 - Sizes: dim, nrow, ncol, length
 - Math: sum, mean, cor, log, min, range
 - Casts: as.matrix, as.vector, as.numeric
 - Type test: is.matrix, is.vector, is.numeric, is.data.frame
 - Ordering: sort, order
 - Help: ?command