Introduction to Pattern Recognition and Data Mining

Lecture 2: Bayesian Decision Theory

Instructor:  Dr. Giovanni Seni

Department of Computer Engineering
Santa Clara University

Overview

« Basic statistical concepts
— Apriori probability, class-conditional density
— Bayes formula & decision rule
— Loss function & minimum-risk classifier

+ Discriminant functions

» Decision regions/boundaries

* The Normal density

— Discriminant functions (LDA)
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Introduction Introduction
Statistical Approach Statistical Approach (2)

« A formalization of common-sense procedures...

» Quantify tradeoffs between various classification decisions
using probability

« Initially assume all relevant probability values are known

» State of nature —

— What fish type (w) will come out next? B @

* o, =salmon, w, = sea bass

N
— wis unpredictable — i.e., a random variable

« A priori probability -- prior knowledge of how likely each
fish type is -- P(w,) + P( @,) = 1

G.Seni —Q1/04

« Best decision rule about next fish type before it actually
appears?

— Decide o, if P(w,) > P(w,); otherwise decide w,
— How well it works?

* P(error) = min [P(w,), P(w,)]

 Incorporating lightness/length info
— Class-conditional probability density
p(x|w1) and p(x|»2) describe the difference

in lightness between populations of sea bass
and salmon
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Introduction
Statistical Approach (3)

* p(x|w) also called the likelihood of « with respect to x

— Other things being equal, & for which p(x|@) is largest is more
“likely” to be true class

» Combining prior & likelihood into posterior — Bayes formula

plw,x) = Plw; | 2)p(x) = p(a|w;) Pw))

Introduction
Statistical Approach (4)

» Bayes Decision Rule

— Decide o, if P(w,|x) > P(w,|x); otherwise decide o,
or
— Decide o), if p(x|w,)P(®,) > p(x|w,)P(w,); otherwise decide w,

. ; P(wl) = 2/3
P(wj | m) _ p(”‘;‘;zg’(w]) P(;u)Z)ZI/S
Sumto 1.0
where at every x
p(z) = > p(@|w;) Plw;)
J
G.Seni - Q1/04 5 G.Seni - Q1/04 6
Introduction

Statistical Approach (5)

» Is Bayes rule optimal?

— i.e., will rule minimize average probability of error?

* For a particular x,
P(wi|z)  decide ws

plerror|r) = {P(w2|x) decide w1

— This is as small as it can be

» Average probability of error

p(error) = 7 p(error|z)p(x)dz

—00
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Bayesian Decision Theory
Loss Function

* Moyl o)) costincurred for taking action «; (i.e.,

classification or rejection) when the state of nature is o,

* Example
« x: financial characteristics of firms applying for a bank loan
* o, — company did not go bankrupt
®, — company failed
* P(®;]x) — predicted probability of bankruptcy

« Confusion matrix:
Algorithm: @, | Algorithm: o,

Truth: g TN FP
Truth: ©, FN ™

« FN are 10 times as costly as FP
= Mool @) = hgq =10 X Aay| @g) =10 % 2yg
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Bayesian Decision Theory
Minimum Risk Classifier

» Expected loss (or risk) associated with taking action o

R(oilz) = z Ao, Plw|z)

J

Overall risk
R = [R(a(z)|z)p(z)dz

» Decision function o(x) chosen so that R(¢|x) is as small
as possible for every x

+ Decision rule: compute R(¢|x) for i = 1,...a and select ¢,
for which R(¢|x) is minimum
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Bayesian Decision Theory
Minimum Risk Classifier (2)

« Two-category case
R(ag|z) = MooP(wol|z) + Aor P(wi|z)
R(Ozl‘l’) = AlUP(W()‘l‘) + )\11P(U.J1|l‘)

» Expressing minimum-risk rule: pick o, if R(e,lx) < R(e|x),
or

(A10 — Aoo) P(wo|z) > (Ao — A1) Plwi|x)
* Inour loan example: Aqy = A4 =0

Pwolz) Aot
Plwilz) 7 Mo

== Plwy|lz) > 10 x P(w;|x)
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Bayesian Decision Theory
Minimum Risk Classifier (3)

* Likelihood ratio: pick a, if

pla|w)  M2—Ax Plws)
p(xfw,) >>\21—)\11 x Plwr)

* Zero-one loss

Bayesian Decision Theory
Minimum Error Rate Classifier
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« Zero-one loss function leads to:
R(eylz) = Z] Aaiw;) P(wjlz)
=
= Plwjlz)
J#
=1— Pwi|z)

* i.e., choose w, for which P(w|x) is maximum

— same rule as in Slide 6 as expected

G.Seni —Q1/04




Bayesian Decision Theory
Discriminant Function

» A useful way of representing a classifier

— One function g,(x) for each class
— Assignx to o, if g(x) > g(x) for all j=i
* Minimum risk: g,(x) = - R(a;|x)
* Minimum error: g,(x) = P(w,|x)
— Monotonic increasing transformations are equivalent

&(x) = p(x|®)P(w)
gi(x) =Inp(x|w) + In P(w)

Bayesian Decision Theory
Discriminant Function (2)

» Two-category case — dichotomizer

— A single function suffices:

8(x) = g,(x) —g,(x)
— Decision rule:

Choose w; if g(x) > 0; otherwise choose ®,

— Convenient forms

8(x) = P(w)|x) - P(w,|x)
) =In pxl®) - Plw)

p(x|wy) Plwy)
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Bayesian Decision Theory Normal Density
Decision Regions & Boundaries Introduction
* R, region in feature space where g,(x) > g,(x) for all j=i * Used to model p(x|w)
— Might not be simply connected P
« Decision boundary: surfaces in feature space where ties =
occur among largest disciminant functions - / ‘
- — = . / \
. / \

LEAC LN A
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« Special attention due to:
— Analytically tractable

— A continuous-valued feature x can be seen as randomly corrupted
version of a single typical x (asymptotically Gaussian)
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Normal Density
Univariate Case

e x ~N(0, 1) --xis normally distributed with zero mean and
unit variance

04

2
pz(l’) 12716 ks "
0=p=¢lx]

* Location-scale shift

z=ox+tu 5
1 L 1 -
~N(y, o p:(2) = pe 15 = -, (55)
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Normal Density
Bivariate Case

* Ifx ~N(0, 1) and y ~N(0, 1) are independent
p(xa Z/) = p(l') X p(y) = %e_%(wz+7/2)

™

+ Contours: p(z,y)=c1 = z2+9y>=co
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Normal Density
Bivariate Case (2)

* Ifx ~N(u, o) and y ~N(u, o,) are independent

IESTR I
2 o, 2| o,

plx,y)= e

2700,

« Contours: ﬁ(ﬂ” — 1)+

cooco_ooo
Soos9232
oR8883R=s

variance-covariance matrix
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Normal Density
Multivariate Case

« Wesayx ~N(y %)

“Ye—p) s Ha—
p(x)zme s(@—p) T (z—p)

where,

x = (x, X, ..., x,) (tstands for the transpose vector form)

u= (1, 1, ..., 1) mean vector

X = dxd covariance matrix
|2 and > are determinant and inverse respectively

(x - W'Z(x - W is (square) Mahalanobis distance
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Bayesian Decision Theory
Discriminant Function — Normal Density

* p(x|w) ~N(u, %)
+ Wehad g;(z) = Inp(z |w;) + In P(w;)
- mu»:—ax—um&%x—mrgyéw

—lani
2

+In P(w,)

Case 1: X; = oI
linear discriminant function

e« Case2: ¥, =X

+ Case 3: 3; = arbitrary
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Bayesian Decision Theory
Discriminant Function — Normal Density (2)

+ Case 1: features are statistically independent (o;= 0) and
share same variance ¢

gi(x) = = Pt + o Plwy)

= %Z[x/t{— 2utx + plp] + In Plw;)

w’i'z + wjo

1
where Wi = /i

wio = — galutp] +In Plw;)

« All priors equal = Minimum (Euclidean) distance classifier
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Bayesian Decision Theory
Discriminant Function — Normal Density (3)

« Case 1: distributions are “spherical” in d dimensions;
boundary is a hyperplane in d-1 dimensions perpendicular
to line between means
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Bayesian Decision Theory
Discriminant Function — Normal Density (4)

« Case 2: samples fall in hyperellipsoidal clusters of equal
size and shape

gi(w) = = 3w — )27 (@ — i) + In Plw)
= wi::(: +win  as X'z can be dropped
where  w; = Xy,
wip = — iS4+ In Pw;)

« All priors equal = Minimum (Mahalanobis) distance
classifier
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Bayesian Decision Theory
Discriminant Function — Normal Density (5)

» Case 2: hyperplane separating class regions is generally
not perpendicular to line between the means

Bayesian Decision Theory
Discriminant Function — Normal Density (6)
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» Case 3: decision surfaces are hyperquadratics (i.e.,
hyperplanes, pairs of hyperplanes, hypershpheres,
hyperellipsoids, hyperhyperboloids)
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