Introduction to Pattern Recognition and Data Mining

Lecture 2: Bayesian Decision Theory

Instructor: Dr. Giovanni Seni

Department of Computer Engineering Santa Clara University

Overview

- · Basic statistical concepts
 - Apriori probability, class-conditional density
 - Bayes formula & decision rule
 - Loss function & minimum-risk classifier
- · Discriminant functions
- · Decision regions/boundaries
- · The Normal density
 - Discriminant functions (LDA)

G.Seni - Q1/04

2

Introduction

Statistical Approach

- · A formalization of common-sense procedures...
- Quantify tradeoffs between various classification decisions using probability
- · Initially assume all relevant probability values are known
- State of nature
 - What fish type (ω) will come out next?
 - ω_1 = salmon, ω_2 = sea bass
 - $-\omega$ is unpredictable i.e., a random variable
- A priori probability -- prior knowledge of how likely each fish type is -- $P(\omega_1)$ + $P(\omega_2)$ = 1

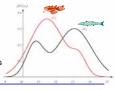
:Seni - Q1/04 3

Introduction

Statistical Approach (2)

- Best decision rule about next fish type before it actually appears?
 - Decide ω_{1} if $P(\omega_{\text{1}}) > P(\omega_{\text{2}})$; otherwise decide ω_{2}
 - How well it works?
 - $P(error) = min [P(\omega_1), P(\omega_2)]$
- Incorporating lightness/length info
 - Class-conditional probability density

 $p(x|\omega 1)$ and $p(x|\omega 2)$ describe the difference in lightness between populations of sea bass and salmon



.Seni – Q1/04

Introduction

Statistical Approach (3)

- $p(x|\omega_i)$ also called the likelihood of ω_i with respect to x
 - Other things being equal, ω_j for which $p(x|\omega_j)$ is largest is more "likely" to be true class
- Combining prior & likelihood into posterior Bayes formula

$$p(w_j,x) = P(w_j \, \big| \, x) p(x) = p(x|w_j) P(w_j)$$

$$P(w_j \mid x) = \frac{p(x|w_j)P(w_j)}{p(x)}$$

where

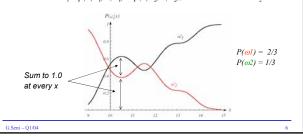
$$p(x) = \sum_{j} p(x|w_j) P(w_j)$$

G.Seni - O1/04

Introduction

Statistical Approach (4)

- · Bayes Decision Rule
 - Decide ω_l if $P(\omega_l|x) > P(\omega_2|x)$; otherwise decide ω_2 or
 - Decide ω_l if $p(x|\omega_l)P(\omega_l) \ge p(x|\omega_2)P(\omega_2)$; otherwise decide ω_2



Introduction

Statistical Approach (5)

- · Is Bayes rule optimal?
 - i.e., will rule minimize average probability of error?
- For a particular x,

$$p(error|x) = \begin{cases} P(w_1|x) & decide \ w_2 \\ P(w_2|x) & decide \ w_1 \end{cases}$$

- This is as small as it can be
- Average probability of error

$$p(error) = \int\limits_{-\infty}^{\infty} p(error|x) p(x) dx$$

G.Seni – Q1/04

Bayesian Decision Theory

Loss Function

- $\lambda(\alpha_i | \omega_i)$: cost incurred for taking action α_i (i.e., classification or rejection) when the state of nature is ω_i
- Example
 - ullet ${\it x}$: financial characteristics of firms applying for a bank loan
 - ω_0 company did not go bankrupt ω_1 company failed
 - $P(\omega_i|\mathbf{x})$ predicted probability of bankruptcy
 - Confusion matrix:

	Algorithm: ω ₀	Algorithm: ω_1
Truth: ω_0	TN	FP
Truth: ω ₄	FN	TP

• FN are 10 times as costly as FP

$$\Rightarrow \lambda(\alpha_0 | \omega_1) = \lambda_{01} = 10 \times \lambda(\alpha_1 | \omega_0) = 10 \times \lambda_{10}$$

G.Seni – Q1/0

8

Bayesian Decision Theory

Minimum Risk Classifier

• Expected loss (or risk) associated with taking action α_i

$$R(lpha_i|x) = \sum\limits_{j=1}^c \lambda(lpha_i|w_j) P(w_j|x)$$

· Overall risk

$$R = \int R(\alpha(x)|x)p(x)dx$$

- Decision function $\alpha(x)$ chosen so that $R(\alpha_i|x)$ is as small as possible for every x
- Decision rule: compute $R(\alpha_i|\mathbf{x})$ for i=1,...a and select α_i for which $R(\alpha_i|x)$ is minimum

Bayesian Decision Theory

Minimum Risk Classifier (2)

· Two-category case

$$R(\alpha_0|x) = \lambda_{00}P(\omega_0|x) + \lambda_{01}P(\omega_1|x)$$

$$R(\alpha_1|x) = \lambda_{10}P(\omega_0|x) + \lambda_{11}P(\omega_1|x)$$

• Expressing minimum-risk rule: pick ω_0 if $R(\alpha_0|\mathbf{x}) < R(\alpha_1|\mathbf{x})$,

$$(\lambda_{10} - \lambda_{00})P(\omega_0|x) > (\lambda_{01} - \lambda_{11})P(\omega_1|x)$$

• In our loan example: $\lambda_{00} = \lambda_{11} = 0$

$$\frac{P(\omega_0|x)}{P(\omega_1|x)} > \frac{\lambda_{01}}{\lambda_{10}} \Longrightarrow P(\omega_0|x) > 10 \times P(\omega_1|x)$$

Bayesian Decision Theory

Minimum Risk Classifier (3)

• Likelihood ratio: pick ω_1 if

$$\underbrace{\frac{p(x|\omega_1)}{p(x|\omega_2)}} > \underbrace{\frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}}} \times \underbrace{\frac{P(\omega_2)}{P(\omega_1)}}_{\Theta}$$

· Zero-one loss

$$\lambda = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\Rightarrow \theta = \frac{P(\omega_2)}{P(\omega_1)} = \theta_a$$

R,

Bayesian Decision Theory

Minimum Error Rate Classifier

· Zero-one loss function leads to:

$$\begin{split} R(\alpha_i|x) &= \sum_{j=1}^c \lambda(\alpha_i|w_j) P(w_j|x) \\ &= \sum_{j\neq i} P(\omega_j|x) \\ &= 1 - P(\omega_i|x) \end{split}$$

- i.e., choose ω_i for which $P(\omega_i|\mathbf{x})$ is maximum
 - same rule as in Slide 6 as expected

Bayesian Decision Theory

Discriminant Function

- · A useful way of representing a classifier
 - One function $g_i(x)$ for each class
 - Assign x to ω_i if $g_i(x) > g_i(x)$ for all $j \neq i$
- Minimum risk: $g_i(x) = -R(\alpha_i|x)$
- Minimum error: $g_i(\mathbf{x}) = P(\omega_i|\mathbf{x})$
 - Monotonic increasing transformations are equivalent

$$g_i(\mathbf{x}) = p(\mathbf{x}|\omega_i)P(\omega_i)$$

 $g_i(\mathbf{x}) = \ln p(\mathbf{x}|\omega_i) + \ln P(\omega_i)$

G.Seni - O1/0

Bayesian Decision Theory

Discriminant Function (2)

- Two-category case dichotomizer
 - A single function suffices:

$$g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x})$$

- Decision rule:

Choose ω_1 if g(x) > 0; otherwise choose ω_2

- Convenient forms

$$g(\mathbf{x}) = P(\omega_1|\mathbf{x}) - P(\omega_2|\mathbf{x})$$

$$g(\mathbf{x}) = \ln \frac{p(\mathbf{x}|\omega_l)}{p(\mathbf{x}|\omega_2)} + \ln \frac{P(\omega_l)}{P(\omega_2)}$$

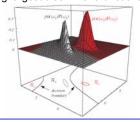
G.Seni - O1/04

1.4

Bayesian Decision Theory

Decision Regions & Boundaries

- R_i region in feature space where $g_i(x) > g_i(x)$ for all $j \neq i$
 - Might not be simply connected
- Decision boundary: surfaces in feature space where ties occur among largest disciminant functions

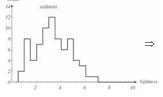


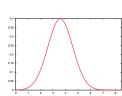
G.Seni – Q1/04

Normal Density

Introduction

• Used to model $p(x|\omega_i)$





- Special attention due to:
 - Analytically tractable
 - A continuous-valued feature x can be seen as randomly corrupted version of a single typical μ (asymptotically Gaussian)

G.Seni – Q1/04

16

Normal Density

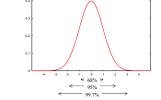
Univariate Case

• $x \sim N(0, 1)$ -- x is normally distributed with zero *mean* and unit *variance*

$$p_x(x)=rac{1}{\sqrt{2\pi}}e^{-rac{1}{2}x^2}$$

$$0=\mu=\varepsilon[x]$$

$$1=\sigma^2=\varepsilon[(x-\mu)^2]$$



· Location-scale shift

$$z = \sigma x + \mu$$

$$\sim N(\mu, \sigma)$$

$$p_z(z)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{1}{2}(rac{z-\mu}{\sigma})^2}=rac{1}{\sigma}p_x(rac{z-\mu}{\sigma})$$

G.Seni – Q1/04

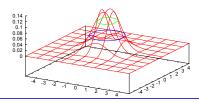
Normal Density

Bivariate Case

• If $x \sim N(0, 1)$ and $y \sim N(0, 1)$ are independent

$$p(x,y) = p(x) imes p(y) = rac{1}{2\pi} e^{-rac{1}{2}(x^2+y^2)}$$

• Contours: $p(x,y) = c_1 \Rightarrow x^2 + y^2 = c_2$



G.Seni - Q1/04

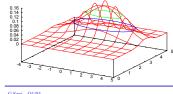
Normal Density

Bivariate Case (2)

• If $x \sim N(\mu_y, \sigma_y)$ and $y \sim N(\mu_y, \sigma_y)$ are independent

$$p(x,y) = \frac{1}{2\pi\sigma_x\sigma_y}e^{-\frac{1}{2}\left(\frac{x-\mu_x}{\sigma_x}\right)^2 - \frac{1}{2}\left(\frac{x-\mu_y}{\sigma_y}\right)^2}$$

• Contours: $\frac{1}{\sigma_{z}^2}(x-\mu_x)^2+\frac{1}{\sigma_{z}^2}(y-\mu_y)^2=c$



$$p(x,y) = \mathrm{N}(\begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}, \begin{bmatrix} \sigma_x^2 & 0 \\ 0 & \sigma_y^2 \end{bmatrix})$$

$$= \mathrm{N}(\begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2^2 & 0 \\ 0 & \frac{1^2}{2} \end{bmatrix})$$

variance-covariance matrix

Normal Density

Multivariate Case

• We say $x \sim N(\mu, \Sigma)$

$$p(x) = rac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{-rac{1}{2}(x-\mu)^t \Sigma^{-1}(x-\mu)}$$

where,

 $x = (x_1, x_2, ..., x_d)^t$ (t stands for the transpose vector form)

 $\mu = (\mu_1, \mu_2, ..., \mu_d)^t$ mean vector

 $\Sigma = d \times d$ covariance matrix

 $|\Sigma|$ and Σ^{-l} are determinant and inverse respectively

 $(x - \mu)^t \Sigma^{-1}(x - \mu)$ is (square) Mahalanobis distance

G.Seni – Q1/04

20

Bayesian Decision Theory

Discriminant Function - Normal Density

- $p(\mathbf{x}|\omega_i) \sim N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$
- We had $g_i(x) = \ln p(x \mid \omega_i) + \ln P(\omega_i)$

$$\begin{array}{ll} \Rightarrow & g_i(x) = -\frac{1}{2}(x-\mu_i)^t \Sigma_i^{-1}(x-\mu_i) - \frac{d}{2} \ln 2\pi \\ & & -\frac{1}{2} \ln \lvert \Sigma_i \rvert + \ln P(\omega_i) \end{array}$$

- Case 1: $\Sigma_i = \sigma^2 I$
- Case 2: $\Sigma_i = \Sigma$

linear discriminant function

• Case 3: $\Sigma_i = arbitrary$

G.Seni - O1/04

Bayesian Decision Theory

Discriminant Function – Normal Density (2)

• Case 1: features are statistically independent ($\sigma_{ij}=0$) and share same variance σ^2

$$\begin{split} g_i(x) &= -\frac{\|x - \mu_i\|^2}{2\sigma^2} + \ln P(\omega_i) \\ &= -\frac{1}{2\sigma^2} [x_i^t x_i^t - 2\mu_i^t x + \mu_i^t \mu_i] + \ln P(\omega_i) \\ &= \boxed{w_i^t x + w_{i0}} \end{split}$$

where $w_i=rac{1}{\sigma^2}\mu_i$ $w_{i0}=-rac{1}{2\sigma^2}[\mu_i^t\mu_i]+\ln P(\omega_i)$

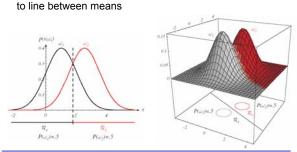
All priors equal ⇒ Minimum (Euclidean) distance classifier

G.Seni - Q1/0

Bayesian Decision Theory

Discriminant Function – Normal Density (3)

 Case 1: distributions are "spherical" in d dimensions; boundary is a hyperplane in d-1 dimensions perpendicular to line between means.



Bayesian Decision Theory

Discriminant Function – Normal Density (4)

 Case 2: samples fall in hyperellipsoidal clusters of equal size and shape

$$\begin{split} g_i(x) &= -\tfrac{1}{2}(x-\mu_i)^t \Sigma_i^{-1}(x-\mu_i) + \ln P(\omega) \\ &= w_i^t x + w_{i0} \quad as \quad x^t \Sigma^{-1} x \ can \ be \ dropped \\ \text{where} \quad w_i &= \Sigma^{-1} \mu_i \\ \\ w_{i0} &= -\tfrac{1}{2} \mu_i^t \Sigma^{-1} \mu_i + \ln P(\omega_i) \end{split}$$

 All priors equal ⇒ Minimum (Mahalanobis) distance classifier

eni – Q1/04 24

