Introduction to Pattern Recognition and Data Mining

Lecture 4: Linear Discriminant Functions

Instructor: Dr. Giovanni Seni

Department of Computer Engineering
Santa Clara University

Overview

- Introduction
 - Approaches to building classifiers
 - Linear discriminant functions: definition and surfaces
- Linear separable case – Perceptron criteria
- Other methods
 - Linear Discriminant Analysis (LDA)
 - Restricted Gaussian classifier (see Lecture 2)
 - Linear Regression – Minimum Squared-Error (MSE) criteria
 - Fisher’s geometric view of LDA
 - Logistic Regression

Introduction

Building Classifiers

- **Class-conditional** ("generative") approach
 - \(p(x|\omega_j, \theta) \) are modeled explicitly; \(\theta \) are estimated via ML
 - Combined with estimates of \(p(\omega_j) \) are inverted via Bayes rule to arrive at \(p(\omega_j|x) \)
- **Regression approach**
 - \(p(\omega_j|x) \) are modeled explicitly
 - e.g., Logistic regression
- **Discriminative approach**
 - Try to model the decision boundary directly – i.e., a mapping from inputs \(x \) to one of the classes
 - Assume we know the form for the discriminant functions \(g_i(x) \)

Introduction

Building Classifiers (2)

- Classification is an easier problem than density estimation (Vapnik)
 - Why use density estimation as an intermediate step?
 - Remember likelihood ratio:
 \[
 \frac{p(x|\omega_1)}{p(x|\omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{22} - \lambda_{11}} \times \frac{p(\omega_2)}{p(\omega_1)}
 \]
 - \(\Rightarrow \) we only need to know if \(\frac{p(\omega_1|x, \theta)}{p(\omega_2|x, \theta)} \)
 - i.e., only ratios matter!
Introduction
Linear Discriminant Functions

• Definition
 – Just a linear combination of the measurements of \(x \) written as
 \[g(x) = w^T x + w_0 \]
 – \(w \) is the “weight” vector of the model
 – \(w_0 \) the “bias” or “threshold” weight

• Optimal if underlying distributions are “cooperative”
 – Gaussians with \(\Sigma_i \neq \Sigma_j \) or \(\Sigma_i = \Sigma \) (LDA - see Lecture 2)
 – Simplicity makes them attractive for initial, trial classifiers
 – Can be generalized to be linear in some given set of functions \(\phi(x) \)

Introduction
Linear Discriminant Functions (2)

• Decision rule - two-class case
 – Decide \(\omega_1 \) if \(g(x) > 0 \) and \(\omega_2 \) if \(g(x) < 0 \)
 – i.e., assign \(x \) to \(\omega_0 \) if \(w^T x \) exceeds threshold \(-w_0 \)
 – If \(g(x) = 0 \) assignment is undefined – i.e., can go either way

• Diagram of model

Introduction
Linear Discriminant Functions (3)

• Homogeneous form
 \[g(x) = w_0 + \sum_{i=1}^{d} w_i x_i = \sum w_i x_i \quad \text{where } x_0 = 1 \]

• Augmented weight & feature vector
 \[a = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}, \quad y = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix} \]

• We write \(g(x) = a^T y \)
Introduction

Decision Surface (2)

- \(g(x) \propto \text{distance from } x \text{ to } H \)
 - Express \(x \) as \(x = x_p + r \frac{w}{||w||} \)
 - because \(g(x_p) = 0 \)
 \[
g(x) = w'x + w_0 = g(x_p) + r w'w \]
 \[
 = ||w|| \Rightarrow r = \frac{g(x)}{||w||}
 \Rightarrow d(0, H) = ||w||
 \]
- Location of \(H \) is determined by \(w_0 \)

Multiclass Case

- One per class decomposition (linear machine)
 - i.e., \(C \) discriminant functions
 - \(\omega_i vs. \neg \omega_i \)
 - Decision boundaries \(H_{ij} \) defined by \(g_i(x) = g_j(x) \)
 - Number of \(H_{ij} \) is often fewer than \(C(C-1)/2 \)
 - Decision regions are convex and singly connected
 - Most suitable when \(p(x|\omega_j) \) is unimodal
 - Many exceptions!

Multiclass Case (2)

- Decision boundaries
 - \(H_{ij} \) defined by \(g_i(x) = g_j(x) \)
 - Number of \(H_{ij} \) is often fewer than \(C(C-1)/2 \)
 - Decision regions are convex and singly connected
 - Most suitable when \(p(x|\omega_j) \) is unimodal
 - Many exceptions!

Multiclass Case (3)

- Without \emph{argmax}, ambiguous class assignments can arise
Linear Separable Case
Perceptron

- Simplifying normalization
 - Replace ω samples by their negatives
 \[\Rightarrow \text{Find } a \text{ such that } ax > 0 \text{ for all samples} \]

- Note that a is not unique!

Linear Separable Case
Perceptron (2)

- Criterion function
 - A scalar function $J(a)$ that is minimized if a is a solution vector
 - Allows use of Gradient Descent methods:
 \[a(k+1) = a(k) - \eta(k) \nabla J(a) \quad \text{or} \quad a(k+1) = a(k) - \mathbf{H}^{-1} \nabla J(a) \quad \text{(Newton)} \]
 - Idea 1: $J(a)$ is # of misclassified samples
 - Idea 2: $J_p(a) \propto \text{sum of distances to decision boundary}$

\[J_p(a) = \sum_{i \in \text{Y(a) is misclassified set}} (a^T y_i) \]

Linear Separable Case
Perceptron (3)

- Fixed-increment, single-sample
 \[
 \begin{align*}
 k &\leftarrow 0 \\
 \text{do} & \{ \\
 k &\leftarrow k + 1 \\
 \text{if } (y^i \text{ is misclassified by } a) & \{ \\
 a &\leftarrow a + y^i \\
 \} \}
 \text{until (all patterns are properly classified)}
 \end{align*}
 \]

- Convergence Theorem — Perceptron algorithm is guaranteed to find a solution if samples are linearly separable

- In nonseparable case, error-correcting algorithm produces an infinite sequence $a(k)$ ⇒ limited applicability

Linear Regression
Minimum Squared Error

- Criterion function
 \[J(a) = ||Ya - b||^2 = \sum_{i=1}^{n} (a^T y_i - h_i)^2 \]
 - Y is $n \times (d+1)$ augmented data matrix
 - b indicator response vector (e.g., $b=1$)

- Rationale - minimizing the size of the error vector $e = Ya - b$

- Note that Y is rectangular and a is overdetermined
 - $Ya = b$ ordinarily has no exact solution

- $J(a)$ is quadratic — we can look for a single global minimum ($\nabla J = 0$)
Linear Regression
Minimum Squared Error (2)

- Closed-form solution
 \[\nabla J = \sum_{i=1}^{n} 2(a^T y_i - b) y_i = 2Y^T (Ya - b) \]
 \[\nabla J = 0 \Rightarrow Y^T a = Y^T b \]
 \[a = (Y^T Y)^{-1} Y^T b \]
 \[= Y^T b \]

- A more general definition of the pseudoinverse always exists: \(Y^+ = \lim_{\varepsilon \to 0} (Y^T Y + \varepsilon I)^{-1} Y^T \)

- We expect to obtain a useful discriminant in both the separable and the nonseparable cases
 - When \(c \) is large, sensitive to "masking" problem (Hastie)

Fisher Linear Discriminant
Low-Dimensional Projection

- Geometric interpretation of dot product
 - Length of the projection of \(x \) onto the (unit) vector \(w \)
 \[w^T x = \| w \| \| x \| \cos \theta \]

- Searching for the \(w \) that best separates the projected data

Linear Regression
Minimum Squared Error (3)

- Example
 - \(X = \begin{bmatrix} 1 & 2 \\ 2 & 0 \\ 3 & 1 \\ 2 & 3 \end{bmatrix} \Rightarrow Y^+ = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 0 \\ -1 & -3 & -1 \\ -1 & -2 & -3 \end{bmatrix} \)

- In R: \(Y.pi <- solve(t(Y) %*% Y) %*% t(Y) \)

Fisher Linear Discriminant
Low-Dimensional Projection (2)

- Criterion function
 - Idea 1: use the distance between the projected sample means
 \[\| \tilde{m}_l - \tilde{m}_i \| = \| w^T (m_l - m_i) \| \]
 where \(m_l = \frac{1}{n_l} \sum x \in D_l x \)

 - Dependent on \(|w| \) could be made arbitrarily large

 - Idea 2: maximize ratio of between-class scatter (as above) to within-class scatter
 \[J_1(w) = \frac{\| \tilde{m}_l - \tilde{m}_i \|^2}{S_1 + S_i} \]
 where \(S_1 = \sum_{x \in D_1} (w^T x - \tilde{m}_i)^2 \)

 - Clearly, \(1/n (S_1^2 + S_i^2) \) is an estimate of the variance of the pooled data
Fisher Linear Discriminant
Low-Dimensional Projection (3)

• \(w \) that optimizes \(J_F() \) can be shown to be
 \[
 w = S_1^{-1}(m_1 - m_2)
 \]
 where \(S_0 = S_1 + S_2 \)
 \[
 S_1 = \sum_{i \in I} (x_i - m_1)(x_i - m_2)'
 \]

• Connection to LDA -- \(p(x|\omega_i) \sim \mathcal{N}(\mu_i, \Sigma) \)

• For the \(c \)-class problem, \(c-1 \) functions are required
 – Projection is from a \(d \) to a \((c-1)\)-dimensional space \((d > c) \)
 – Sacrifice performance for the advantage of lower-dimensional space

Logistic Regression
Modeling Posteriors

• Model form: \(P(\omega | x) = \phi(\beta_\omega + \beta' x) \) where \(\phi \) is the "logistic" function

\[
\phi(z) = \frac{e^z}{1 + e^z}
\]

– Two-class case: \(P(\omega_2 | x) = 1 - P(\omega_1 | x) = \frac{1}{1 + e^{\beta_1 x}} \)

• Log of “odds ratio” is linear

\[
\log \frac{P(\omega_1 | x)}{P(\omega_2 | x)} = \beta_1 + \beta' x \quad \Rightarrow \text{decision boundaries are linear}
\]
Logistic Regression
Comparison to LDA

• We had
\[g(x) = g_1(x) - g_2(x) = (w_1'x + w_{10}) - (w_2'x + w_{20}) \]
\[= x\Sigma^{-1}(\mu_i - \mu_j) + (w_{10} - w_{20}) \]
\[= \alpha' + \alpha'x \]

• Simply note that
\[g(x) = \log \frac{P(\omega_i|x)}{P(\omega_j|x)} \]

 – LR’s \(\beta \) computed directly not via \(\mu_i, \mu_j, \Sigma \)

 • i.e., optimizing different criteria

 – LR holds also for some non-normal densities… it only needs the ratio to be of the logistic type

 – If \(x \) are normal, then LDA is 30% more efficient

Logistic Regression
Comparison to LDA (2)

• If \(x \) are not normal, then LDA can be much worse (e.g., extreme outliers)

• LR can be degenerate on separable data

 – Numerical issues when \(||\beta|| = \infty \)

• In general, LR is a safer, more robust bet, but often similar results