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Introduction to Pattern Recognition and Data Mining

Lecture 4: Linear Discriminant Functions
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Overview

• Introduction

– Approaches to building classifiers
– Linear discriminant functions: definition and surfaces

• Linear separable case – Perceptron criteria

• Other methods  

– Linear Discriminant Analysis (LDA) 
• Restricted Gaussian classifier (see Lecture 2) 

– Linear Regression -- Minimum Squared-Error (MSE) criteria
– Fisher’s geometric view of LDA
– Logistic Regression
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Introduction
Building Classifiers

• Class-conditional (“generative”) approach

– p(x|ωj,θj) are modeled explicitly;     are estimated via ML

– Combined with estimates of p(ωj) are inverted via Bayes rule to 
arrive at p(ωj|x)

• Regression approach

– p(ωj|x) are modeled explicitly
– e.g., Logistic regression

• Discriminative approach

– Try to model the decision boundary directly – i.e., a mapping from 
inputs x to one of the classes

– Assume we know the form for the discriminat functions gi(x)

jθ̂
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Introduction
Building Classifiers (2)

• Classification is an easier problem than density estimation 
(Vapnik)

– Why use density estimation as an intermediate step?
– Remember likelihood ratio:

⇒ we only need to know if

– i.e., only ratios matter! 

p(x|ω2)
p(x|ω1) >

P(ω1)
P(ω2)
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Introduction
Linear Discriminant Functions

• Definition

– Just a linear combination of the measurements of x written as 
g(x)=wtx+w0

– w is the “weight” vector of the model 

– w0 the “bias” or “threshold” weight

• Optimal if underlying distributions are “cooperative”

– Gaussians with                   or                  (LDA - see Lecture 2)

– Simplicity makes them attractive for initial, trial classifiers

– Can be generalized to be linear in some given set of functions 
ϕ(x)

Σi = û2I Σi = Σ
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Introduction
Linear Discriminant Functions (2)

• Decision rule - two-class case

– Decide ω1 if g(x)>0 and ω2 if g(x)<0

– i.e., assign x to ω1 if  wtx exceeds threshold −w0 

– If g(x)=0 assignment is undefined – i.e., can go either way 

• Diagram of model
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Introduction
Linear Discriminant Functions (3)

• Homogeneous form

• Augmented weight & feature vector

• We write g(x)=aty
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Introduction
Decision Surface

• Equation g(x)=0 defines surface that separates points 
assigned to the category ω1 from points assigned to the 
category ω2

– g(x) linear ⇒ surface is a hyperplane H

– Consider x1 and x2 both on the decision surface:

– Orientation of H is determined by w

wtx1+w0 = wtx2+w0

or wt(x1− x2) = 0
⇒ w is normal to any vector lying in the 

hyperplane x1

x2

where g(x)>0

where
g(x)<0
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Introduction
Decision Surface (2)

• g(x)∝ distance from x to H

– Express x as x

– because g(xp)=0

• Location of H is determined by w0
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Introduction
Multiclass Case

• One per class decomposition (linear machine)

– i.e., C discriminant functions
– ωi  vs. ¬ωi

g1:

x

0
ω1

ω2,ω3,…,ωc

argmax
…

gc: 0
ωc

ω1,ω2,…,ωc-1

0
ω2

ω1,ω3,…,ωc
g2:
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Introduction
Multiclass Case (2)

• Decision boundaries

– Hij defined by gi(x)= gj(x)
– Number of Hij is often fewer than c(c-1)/2
– Decision regions are convex and singly connected

• Most suitable when p(x|ωj) is unimodal

– Many exceptions!
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Introduction
Multiclass Case (3)

• Without argmax, ambiguous class assignments can arise 
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Linear Separable Case
Perceptron

• Simplifying normalization

– Replace ω2  samples by their negatives

⇒ Find a such that atx > 0 for all samples

• Note that a is not unique! 
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Linear Separable Case
Perceptron (2)

• Criterion function

– A scalar function J(a) that is minimized if a is a solution vector
– Allows use of Gradient Descent methods:

– Idea 1: J(a) is # of misclassified samples
– Idea 2: Jp(a) is ∝ to sum of distances to decision

boundary

(Newton)       )()()1(
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Linear Separable Case
Perceptron (3)

• Fixed-increment, single-sample

• Convergence Theorem – Perceptron algorithm is guaranteed to 
find a solution if samples are linearly separable

• In nonseparable case, error-correcting algorithm produces 
an infinite sequence a(k)  ⇒ limited applicability

k ← 0
do {

k ← k+1
if (yk is missclassified by a) {

a ← a + yk

}
} until (all patterns are properly classified)
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Linear Regression
Minimum Squared Error 

• Criterion function

– Y is n×(d+1) augmented data matrix
– b indicator response vector (e.g., bi=1)

• Rationale - minimizing the size of the error vector e = Ya − b

• Note that Y is rectangular and a is overdetermined

– Ya = b ordinarily has no exact solution

• Js(a) is quadratic – we can look for a single global minimum 
(∇Js= 0)
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Linear Regression
Minimum Squared Error (2)

• Closed-form solution

• A more general definition of the pseudoinverse always 
exists:

• We expect to obtain a useful discriminant in both the 
separable and the nonseparable cases

– When c is large, sensitive to “masking” problem (Hastie)
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Linear Regression
Minimum Squared Error (3)

• Example

• In R: Y.pi <-solve(t(Y) %*% Y) %*% t(Y)
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Fisher Linear Discriminant
Low-Dimensional Projection 

• Geometric interpretation of dot product

– Length of the projection of x onto the (unit) vector w

• Searching for the w that best separates the projected data

θcosxwxw =t
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Fisher Linear Discriminant
Low-Dimensional Projection (2)

• Criterion function

– Idea 1: use the distance between the projected sample means

• Dependent on ||w||… could be made arbitrarily large

– Idea 2: maximize ratio of between-class scatter (as above) to 
within-class scatter

• Clearly,                          is an estimate of the variance of the pooled 
data
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Fisher Linear Discriminant
Low-Dimensional Projection (3)

• w that optimizes JF() can be shown to be 

• Connection to LDA -- p(x|ωi) ∼ N(µi, Σ)

• For the c-class problem, c−1 functions are required

– Projection is from a d to a (c−1) dimensional space (d > c)
– Sacrifice performance for the advantage of lower-dimensional space
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Logistic Regression
Modeling Posteriors 

• Model form:                                     where φ is the “logistic”
function

– Two-class case: 

• Log of “odds ratio” is linear 
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Logistic Regression
Fitting Model 

• φ’ is given by:

• Log-likelihood (two-class case)
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Logistic Regression
Fitting Model (2)

• Differentiating again to obtain the Hessian:

• Newton steps is:
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Logistic Regression
Comparison to LDA 

• We had

• Simply note that

– LR’s β computed directly not via µi, µj, Σ

• i.e., optimizing different criteria

– LR holds also for some non-normal densities… it only needs the 
ratio to be of the logistic type

– If xi are normal, then LDA is 30% more efficient
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Logistic Regression
Comparison to LDA (2)

• If xi are not normal, then LDA can be much worse (e.g., 
extreme outliers)

• LR can be degenerate on separable data 

– Numerical issues when ||β|| = ∞

• In general, LR is a safer, more                                 
robust bet, but often similar results
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