Introduction to Pattern Recognition and Data Mining

Lecture 4: Linear Discriminant Functions

Instructor: Dr. Giovanni Seni

Department of Computer Engineering Santa Clara University

Overview

- Introduction
 - Approaches to building classifiers
 - Linear discriminant functions: definition and surfaces
- · Linear separable case Perceptron criteria
- Other methods
 - Linear Discriminant Analysis (LDA)
 - Restricted Gaussian classifier (see Lecture 2)
 - Linear Regression -- Minimum Squared-Error (MSE) criteria
 - Fisher's geometric view of LDA
 - Logistic Regression

G Sani O1/04

2

Introduction

Building Classifiers

- · Class-conditional ("generative") approach
 - $-p(\mathbf{x}|\omega_p,\theta_p)$ are modeled explicitly; $\hat{\theta}_p$ are estimated via ML
 - Combined with estimates of $p(\omega)$ are inverted via Bayes rule to arrive at $p(\omega|\mathbf{x})$
- Regression approach
 - $-p(\omega_i|x)$ are modeled explicitly
 - e.g., Logistic regression
- · Discriminative approach
 - Try to model the decision boundary directly i.e., a mapping from inputs \boldsymbol{x} to one of the classes
 - Assume we know the form for the discriminat functions $g_i(x)$

G.Seni – Q1/04

Introduction

Building Classifiers (2)

- Classification is an easier problem than density estimation (Vapnik)
 - Why use density estimation as an intermediate step?
 - Remember likelihood ratio:

$$\frac{p(x|\omega_1)}{p(x|\omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \times \frac{P(\omega_2)}{P(\omega_1)}$$

 $\Rightarrow \text{we only need to know if} \ \ \frac{P(\omega_i)p(x\,|\,\omega_i)}{P(\omega_j)p(x\,|\,\omega_j)}\!>\!1$

- i.e., only ratios matter!

G.Seni - Q1/0

Introduction

Linear Discriminant Functions

- Definition
 - Just a linear combination of the measurements of x written as $g(x) = w'x + w_0$
 - w is the "weight" vector of the model
 - wo the "bias" or "threshold" weight
- · Optimal if underlying distributions are "cooperative"
 - Gaussians with $\Sigma_i = \sigma^2 I$ or $\Sigma_i = \Sigma$ (LDA see Lecture 2)
 - Simplicity makes them attractive for initial, trial classifiers
 - Can be generalized to be linear in some given set of functions $\varphi(\mathbf{x})$

Seni – Q1/04

Introduction

Linear Discriminant Functions (2)

- · Decision rule two-class case
 - Decide ω_l if $g(\mathbf{x}) > 0$ and ω_2 if $g(\mathbf{x}) < 0$
 - i.e., assign x to ω_i if $w^i x$ exceeds threshold $-w_0$
 - If g(x)=0 assignment is undefined i.e., can go either way

Introduction

Linear Discriminant Functions (3)

· Homogeneous form

$$g(\mathbf{x}) = w_0 + \sum_{i=1}^{d} w_i x_i = \sum_{i=0}^{d} w_i x_i$$
 where $x_0 = 1$

· Augmented weight & feature vector

$$\mathbf{a} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} w_0 \\ \mathbf{w} \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix} = \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix}$$

• We write $g(x) = a^t y$

G.Seni – Q1/04

Introduction

Decision Surface

- Equation g(x)=0 defines surface that separates points assigned to the category ω_l from points assigned to the category ω_2
 - $-\ g(\!x\!)$ linear \Rightarrow surface is a *hyperplane* H
 - Consider x_1 and x_2 both on the decision surface:

$$\boldsymbol{w}^t \boldsymbol{x}_1 + \boldsymbol{w}_0 = \boldsymbol{w}^t \boldsymbol{x}_2 + \boldsymbol{w}_0$$

or
$$w^t(x_1 - x_2) = 0$$

⇒ w is normal to any vector lying in the hyperplane

- Orientation of H is determined by w

G.Seni – Q1/04

Linear Separable Case

Perceptron

- · Simplifying normalization
 - Replace ω_2 samples by their negatives
 - \Rightarrow Find \mathbf{a} such that $\mathbf{a}^t x > 0$ for all samples

• Note that a is not unique!

G.Seni - Q1/0-

Linear Separable Case

Perceptron (2)

- · Criterion function
 - A scalar function J(a) that is minimized if a is a solution vector
 - Allows use of Gradient Descent methods:

$$\mathbf{a}(k+1) = \mathbf{a}(k) - \eta(k)\nabla J(\mathbf{a})$$
 or $\mathbf{a}(k+1) = \mathbf{a}(k) - \mathbf{H}^{-1}\nabla J(\mathbf{a})$ (Newton)

- Idea 1: J(a) is # of misclassified samples
- Idea 2: $J_p(a)$ is ∞ to sum of distances to decision boundary

$$J_p(\mathbf{a}) = \sum_{y \in Y} (-\mathbf{a}^t y)$$
 where $Y(\mathbf{a})$ is misclassified set

G.Seni – Q1/04

14

Linear Separable Case

Perceptron (3)

· Fixed-increment, single-sample

```
\begin{array}{l} k \leftarrow 0 \\ \textbf{do } \{ \\ k \leftarrow k+1 \\ \textbf{if } (y^k \text{ is missclassified by } \textbf{\textit{a}}) \; \{ \\ \textbf{\textit{a}} \leftarrow \textbf{\textit{a}} + y^k \\ \} \\ \textbf{until } (\text{all patterns are properly classified}) \end{array}
```

- Convergence Theorem Perceptron algorithm is guaranteed to find a solution if samples are linearly separable
- In nonseparable case, error-correcting algorithm produces an infinite sequence a(k) ⇒ limited applicability

G.Seni – Q1/04 15

Linear Regression

Minimum Squared Error

· Criterion function

$$J_s(\mathbf{a}) = \|\mathbf{Y}\mathbf{a} - \mathbf{b}\|^2 = \sum_{i=1}^n (\mathbf{a}^i \mathbf{y}_i - b_i)^2$$

- Y is $n \times (d+1)$ augmented data matrix
- **b** indicator response vector (e.g., $b_i = I$)
- Rationale minimizing the size of the error vector $\boldsymbol{e} = \boldsymbol{Y}\boldsymbol{a} \boldsymbol{b}$
- Note that Y is rectangular and a is overdetermined
 - Ya = b ordinarily has no exact solution
- $J_{\rm s}(a)$ is quadratic we can look for a single global minimum ($\nabla J_{\rm s}=0$)

G.Seni - Q1/04

Linear Regression

Minimum Squared Error (2)

· Closed-form solution

$$\nabla J_s = \sum_{i=1}^{n} 2(\mathbf{a}^t \mathbf{y}_i - b_i) \mathbf{y}_i = 2\mathbf{Y}^t (\mathbf{Y} \mathbf{a} - \mathbf{b})$$

$$\nabla J_s = 0 \quad \Rightarrow \quad \mathbf{Y}^t \mathbf{Y} \mathbf{a} = \mathbf{Y}^t \mathbf{b}$$

$$\mathbf{a} = (\mathbf{Y}^t \mathbf{Y})^{-1} \mathbf{Y}^t \mathbf{b}$$

$$= \mathbf{Y}^t \mathbf{b}$$

- A more general definition of the pseudoinverse always exists: Y⁺ ≡ lim(Y'Y + ¿I)⁻¹Y¹
- We expect to obtain a useful discriminant in both the separable and the nonseparable cases
 - When \emph{c} is large, sensitive to "masking" problem (Hastie)

G.Seni – Q1/04

G.Seni – Q1/04

Linear Regression

Minimum Squared Error (3)

Example

In R: Y.pi <-solve(t(Y) %*% Y) %*% t(Y)

$$\mathbf{Y}^{\dagger} = (\mathbf{Y}^{\dagger}\mathbf{Y})^{-1}\mathbf{Y}^{\dagger} = \begin{bmatrix} 5/4 & 13/12 & 3/4 & 7/12 \\ -1/2 & -1/6 & -1/2 & -1/6 \\ 0 & -1/3 & 0 & -1/3 \end{bmatrix} \Rightarrow \mathbf{Y}^{\dagger}\mathbf{b} = \mathbf{a} = \begin{bmatrix} 11/3 \\ -4/3 \\ -2/3 \end{bmatrix}$$
$$\Rightarrow g(\mathbf{x}) = \mathbf{a}^{\dagger}\mathbf{y} = \frac{11}{3} - \frac{4}{3}x_1 - \frac{2}{3}x_2$$

G Seni - O1/0

Fisher Linear Discriminant

Low-Dimensional Projection

- · Geometric interpretation of dot product
 - Length of the projection of \mathbf{x} onto the (unit) vector \mathbf{w} $\mathbf{w}'\mathbf{x} = \|\mathbf{w}\| \|\mathbf{x}\| \cos \theta$
- Searching for the $\ensuremath{\mathbf{w}}$ that best separates the projected data

Fisher Linear Discriminant

Low-Dimensional Projection (2)

- · Criterion function
 - Idea 1: use the distance between the projected sample means

$$\left|\widetilde{m}_1 - \widetilde{m}_2\right| = \left|\mathbf{w}^t(\mathbf{m}_1 - \mathbf{m}_2)\right|$$
 where $\mathbf{m}_i = \frac{1}{n_i} \sum_{\mathbf{x} \in D_i} \mathbf{x}$

- Dependent on $\|w\|_{\cdots}$ could be made arbitrarily large
- Idea 2: maximize ratio of between-class scatter (as above) to within-class scatter

$$J_F(\mathbf{w}) = \frac{\left|\widetilde{m}_1 - \widetilde{m}_2\right|^2}{\widetilde{S}_1^2 + \widetilde{S}_2^2} \quad \text{where } S_i^2 = \sum_{\mathbf{x} \in D_i} (\mathbf{w}^t \mathbf{x} - \mathbf{w}^t \mathbf{m}_i)^2$$

• Clearly, $(1/n)(\widetilde{S}_1^2+\widetilde{S}_2^2)$ is an estimate of the variance of the pooled data

G.Seni - Q1/04

Fisher Linear Discriminant

Low-Dimensional Projection (3)

• w that optimizes $J_E()$ can be shown to be

$$\mathbf{w} = \mathbf{S}_w^{-1}(\mathbf{m}_1 - \mathbf{m}_2) \qquad \text{where} \quad \mathbf{S}_w = \mathbf{S}_1 + \mathbf{S}_2$$
$$\mathbf{S}_i = \sum_{\mathbf{x} \in D} (\mathbf{x} - \mathbf{m}_i)(\mathbf{x} - \mathbf{m}_i)^i$$

• Connection to LDA -- $p(\mathbf{x}|\omega_0) \sim N(\boldsymbol{\mu}_0, \boldsymbol{\Sigma})$

$$g(\mathbf{x}) = g_i(\mathbf{x}) - g_j(\mathbf{x}) = (\mathbf{w}_i' \mathbf{x} + w_{i0}) - (\mathbf{w}_j' \mathbf{x} + w_{j0})$$

= $\mathbf{x}' \Sigma^{-1} (\mu_i - \mu_j) + (w_{i0} - w_{j0})$ since $\mathbf{w}_i = \Sigma^{-1} \mu_i$

- For the c-class problem, c-1 functions are required
 - Projection is from a d to a (c-1) dimensional space (d > c)
 - Sacrifice performance for the advantage of lower-dimensional space

G Seni - O1/04

21

Logistic Regression

Modeling Posteriors

• Model form: $P(\omega_1 \mid \mathbf{x}) = \phi(\beta_0 + \beta' \mathbf{x})$ where ϕ is the "logistic" function

$$\phi(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

- Two-class case: $P(\omega_2 \mid \mathbf{x}) = 1 P(\omega_1 \mid \mathbf{x}) = \frac{1}{1 + e^{\beta_0 + \beta' \mathbf{x}}}$
- · Log of "odds ratio" is linear

$$\log \frac{P(\omega_{_{\! 1}} \, | \, \mathbf{x})}{P(\omega_{_{\! 2}} \, | \, \mathbf{x})} = \beta_{_{\! 0}} + \beta^{_{\! 1}} \mathbf{x} \qquad \Rightarrow \text{decision boundaries are linear}$$

G.Seni - Q1/04

22

Logistic Regression

Fitting Model

φ' is given by:

$$\phi'(z) = \frac{e^{-z}}{(1+e^{-z})^2} = \frac{e^{-z}}{1+e^{-z}} \frac{1}{1+e^{-z}} = \frac{1}{1+e^z} \frac{e^z}{1+e^z} = \phi(z)(1-\phi(z))$$

• Log-likelihood (two-class case)

G.Seni – Q1/04

Logistic Regression

Fitting Model (2)

· Differentiating again to obtain the Hessian:

$$\partial^2 I/\partial \beta_s \partial \beta_r = \sum_{i=1}^n \partial \beta_s (b_i - P_i) x_{ir} = -\sum_{i=1}^n \phi'(\beta^i \mathbf{x}_i) x_{ir} x_{is} = -\sum_{i=1}^n P_i (1 - P_i) x_{ir} x_{is}$$

$$\mathbf{H} = -\mathbf{X}'\mathbf{W}\mathbf{X} \qquad \text{where } \mathbf{H} = \begin{pmatrix} P_1(1-P_1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & P_n(1-P_n) \end{pmatrix}$$

· Newton steps is:

$$\begin{split} \boldsymbol{\beta}(k+1) &= \boldsymbol{\beta}(k) - \mathbf{H}^{-1} \nabla J(\boldsymbol{\beta}) \\ &= \boldsymbol{\beta}(k) + [\mathbf{X}^t \mathbf{W} \mathbf{X}]^{-1} \mathbf{X}^t (\mathbf{b} - \mathbf{P}) \end{split}$$

G.Seni - Q1/0

Logistic Regression

Comparison to LDA

• We had
$$g(\mathbf{x}) = g_i(\mathbf{x}) - g_j(\mathbf{x}) = (\mathbf{w}_i'\mathbf{x} + w_{i0}) - (\mathbf{w}_j'\mathbf{x} + w_{j0})$$

 $= \mathbf{x}'\Sigma^{-1}(\mu_i - \mu_j) + (w_{i0} - w_{j0})$ since $\mathbf{w}_i = \Sigma^{-1}\mu_i$
 $= \alpha_0 + \alpha'\mathbf{x}$

- Simply note that $g(\mathbf{x}) = \log \frac{P(\omega_i \mid \mathbf{x})}{P(\omega_j \mid \mathbf{x})}$
 - LR's ${\pmb \beta}$ computed directly not via $\mu_{\it i},\,\mu_{\it j},\, \varSigma$
 - · i.e., optimizing different criteria
 - LR holds also for some non-normal densities... it only needs the ratio to be of the logistic type
 - If x_i are normal, then LDA is 30% more efficient

i.Seni - Q1/04

25

Logistic Regression

Comparison to LDA (2)

• If x_i are not normal, then LDA can be much worse (e.g., extreme outliers)

- · LR can be degenerate on separable data
 - Numerical issues when $\|\beta\|$ = ∞
- In general, LR is a safer, more robust bet, but often similar results

Cani O1/04