Introduction to Pattern Recognition and Data Mining

Lecture 4: Linear Discriminant Functions

Instructor:  Dr. Giovanni Seni

Department of Computer Engineering
Santa Clara University

Overview

« Introduction
— Approaches to building classifiers
— Linear discriminant functions: definition and surfaces
« Linear separable case — Perceptron criteria
* Other methods
— Linear Discriminant Analysis (LDA)
« Restricted Gaussian classifier (see Lecture 2)

— Linear Regression -- Minimum Squared-Error (MSE) criteria
— Fisher's geometric view of LDA
— Logistic Regression
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Introduction
Building Classifiers

» Class-conditional (“generative”) approach

— p(x|w, 6) are modeled explicitly; é, are estimated via ML

— Combined with estimates of p(w) are inverted via Bayes rule to
arrive at p(wx)

* Regression approach
- p(w]x) are modeled explicitly
— e.g., Logistic regression

« Discriminative approach

— Try to model the decision boundary directly — i.e., a mapping from
inputs x to one of the classes

— Assume we know the form for the discriminat functions g,(x)
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Introduction
Building Classifiers (2)

« Classification is an easier problem than density estimation
(Vapnik)
— Why use density estimation as an intermediate step?
— Remember likelihood ratio:

pla|wr) >)\127)\22 % Plwo)
plalwy) ~ Nai—An * Plwn)

., P@)pxlo)
= we only need to know if P(e,)p(x| )

— i.e., only ratios matter!
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Introduction
Linear Discriminant Functions

» Definition
— Just a linear combination of the measurements of x written as
g(x)=wx+w,
— wis the “weight” vector of the model

— w, the “bias” or “threshold” weight

» Optimal if underlying distributions are “cooperative”

— Gaussians with 3J; = 02] or ¥; = ¥ (LDA - see Lecture 2)
— Simplicity makes them attractive for initial, trial classifiers

— Can be generalized to be linear in some given set of functions

Introduction
Linear Discriminant Functions (2)

« Decision rule - two-class case

— Decide o, if g(x)>0 and o, if g(x)<0
- ie., assign xto o, if wix exceeds threshold -w,

— If g(x)=0 assignment is undefined —i.e., can go either way

» Diagram of model o
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Introduction Introduction

Linear Discriminant Functions (3)

« Homogeneous form

d d
g(x)=w, + ZW,X; = Zwix‘ where x, =1
i=1

i=0

* Augmented weight & feature vector

W, 1
1
ac| {%} y=| ¥ :H
: w X

Wa Xa

* We write g(x)=a'y
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Decision Surface

« Equation g(x)=0 defines surface that separates points
assigned to the category o, from points assigned to the

category o,
— g(x) linear = surface is a hyperplane H
— Consider x; and x, both on the decision surface:
wix,tw, = wx,+w, :
or wix;—x,)=0
= wis normal to any vector lying in the
hyperplane

% where g(x)>0

where
2(5<0

— Orientation of H is determined by w
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Introduction

Introduction
Decision Surface (2) Multiclass Case
g(x)ocdistance from x to H » One per class decomposition (linear machine)
X — i.e., C discriminant functions
_ExpreSSvasv_x +rHWH " .-/'\ A ~ V5. -0,
- because g(x,)=0 \/ i . OT‘
; X, Sl o,
P i - ey
= rHWH : ‘,‘ 3 25 OF \
7 - Oy Oy ey O
g(x) A 2N x — e argmax —
= s 4
=d(0,H)=w,/|w| Yl N o opj
&
+ Location of H is determined by w, " (00002010
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Introduction Introduction
Multiclass Case (2)

Decision boundaries

— Hj; defined by g;(x)= g;(x)

— Number of /;; is often fewer than c(c-1)/2

— Decision regions are convex and singly connected
* Most suitable when p(x| ) is unimodal

— Many exceptions!
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Multiclass Case (3)

» Without argmax, ambiguous class assignments can arise

|_ ambiguonts
I| region
@
|
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Linear Separable Case
Perceptron

+ Simplifying normalization

— Replace w, samples by their negatives

= | Find a such that a'x > 0 for all samples

sl it ot safntfin

region reglon ¥2

* Note that a is not unique!
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Linear Separable Case
Perceptron (2)

« Criterion function

— A scalar function J(a) that is minimized if a is a solution vector

— Allows use of Gradient Descent methods:
a(k+1)=a(k)-n(k)VJ(a) or
a(k+1)=a(k)-H'VJ(a)  (Newton)

Jra)

— Idea 1: J(a) is # of misclassified samples
— ldea 2: J,(a) is o to sum of distances to decision
boundary

J,, (a) Z (—a'y)| where Y(a)is misclassified set
yeY
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Linear Separable Case
Perceptron (3)

* Fixed-increment, single-sample
k<0
do {
k « k+1
if ()* is missclassified by a) {
a<—a+tys

} until (all patterns are properly classified)
» Convergence Theorem — Perceptron algorithm is guaranteed to
find a solution if samples are linearly separable

* In nonseparable case, error-correcting algorithm produces
an infinite sequence a(k) = limited applicability
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Linear Regression
Minimum Squared Error

¢ Criterion function

J(@)=|Ya-b|" = @'y, -5)’
i=1

— Y is nx(d+1) augmented data matrix
- b indicator response vector (e.g., b;=1)

» Rationale - minimizing the size of the error vector e=Ya—-b

« Note that Y is rectangular and a is overdetermined

— Ya=b ordinarily has no exact solution

» J(a) is quadratic — we can look for a single global minimum
(VJ=0)
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Linear Regression
Minimum Squared Error (2)

» Closed-form solution
VJ, =Y 2('y, -b)y, =2Y'(Ya-b)
i=1
VJ,=0 = Y'Ya=Y'b
a=(Y'Y)'Y'b
=¥'b|

» A more general definition of the pseudoinverse always
exists: Y = l_in(}(Y‘Y+gI)"Y‘
* We expect to obtain a useful discriminant in both the
separable and the nonseparable cases
— When cis large, sensitive to “masking” problem (Hastie)

Linear Regression
Minimum Squared Error (3)
* Example
12 112
20 12 0
X= = Y=
31 -1 -3 -1
23 -1 -2 -3
In R: Y.pi <-solve(t(Y) %*% Y) %*% t(Y)
5/4 13/12 3/4 7/12 11/3
Y =(Y'Y)'Y'=|-1/2 -1/6 -1/2 -1/6|=Y'b=a=|-4/3
0 -1/3 0 -1/3 -2/3
o1 2
= g=ay=TTx-In
18
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Fisher Linear Discriminant

Fisher Linear Discriminant
Low-Dimensional Projection

« Geometric interpretation of dot product

— Length of the projection of x onto the (unit) vector w

wx = HwHHchosH

« Searching for the w that best separates the projected data

Low-Dimensional Projection (2)

« Criterion function
— ldea 1: use the distance between the projected sample means

~ 1
‘m,—mz‘:‘w‘(m,—mz)‘ where m, = ZX
i xeD,

« Dependent on |w]|... could be made arbitrarily large

— Idea 2: maximize ratio of between-class scatter (as above) to

within-class scatter

7, ()= =
W)=
4 S2+87

2

where S} = Z:(w'x—w'm,)2
xeD,

Clearly, (1/2)(S? +57) is an estimate of the variance of the pooled

data

20
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Fisher Linear Discriminant
Low-Dimensional Projection (3)

» w that optimizes J.() can be shown to be
w=S8.(m, —m,) where S, =8§,+8§,

S, = Z(X_mi)(x_mi)/

xeD,

» Connection to LDA -- p(x|w) ~N(p, 2)

8(x) = g,(x) =~ g, (X) = (Wix+ W) = (W)X +w,)

Logistic Regression
Modeling Posteriors

* Model form: P(w, |x)=¢(B,+p'x) where ¢ is the “logistic”
function

e’ 1

1+e* 1+e~

#(z)

- Two-class case: P(w, |x)=1-P(e,|x)=

=XZ (= 1) + (W = wyq) - sincew, =Xy, 1+
- * Log of “odds ratio” is linear
* For the c-class problem, ¢/ functions are required
— Projection is from a d to a (c—I) dimensional space (d > ¢) log ;;((Z)J; l‘i; =py+p'x = decision boundaries are linear
— Sacrifice performance for the advantage of lower-dimensional space
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Logistic Regression
Fitting Model

* ¢ is given by:

po=— - L L ¢ ey

(+e7) l+elte’ 1+¢ lte

* Log-likelihood (two-class case)

l(ﬂ):ib,lnP(x,;,B)+(1—b,)1n(l—P(x,;/j‘)) b,:{l rea

0 otherwise

(b 1=b ),
5‘1/6/&:Z[F’—l_};})(ﬁr&,)xﬂ-

i=1 i
al/éﬂ=i{%—%}ﬁ(l—e>x, = 3i0-P)- RA-b)k,
=\ L i i=1

=6, -Bx =X (b-P)

i=1
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Logistic Regression
Fitting Model (2)

« Differentiating again to obtain the Hessian:

P(1-P)x,x,

i iMirtis

S0P, =Y P.(b~ By, =Y F(Bx )5, =3
i=1 i=1

i=l

RA-£) - 0
H=-X'WX where H= : :

0 RO-R)

« Newton steps is:

Bk+1)=B(k)-H'VJ(B)
=B(k)+[X'WX]"' X' (b—P)
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Logistic Regression
Comparison to LDA

+ Wehad g(x)=g,(x)—g,(x) = (Wx+w,)—(Wx+w,)
=XT7 (= 1) + (Wi

=q,+a'x

. 5l
—w;,) sincew, =%y,

Plo, | %)

« Simply note that g(x)=1o
ply g(x) gP(a)j|x)

- LR’s gcomputed directly not via u, w4, &
« i.e., optimizing different criteria

— LR holds also for some non-normal densities... it only needs the
ratio to be of the logistic type

— If x; are normal, then LDA is 30% more efficient
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Logistic Regression
Comparison to LDA (2)

* If x; are not normal, then LDA can be much worse (e.g.,
extreme outliers)

* LR can be degenerate on separable data

— Numerical issues when ||B|| = w

* In general, LR is a safer, more
robust bet, but often similar results = /
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