Introduction to Pattern Recognition and Data Mining

Lecture 7: Clustering

Instructor: Dr. Giovanni Seni

Department of Computer Engineering Santa Clara University

Overview

- Introduction
 - What is Cluster Analysis?
- · Distance (and similarity) notion
 - Measures for numerical data
 - Measures for binary data
 - Ordinal, nominal, and mixed data
- · Partition-based Clustering
 - Criterion functions
 - K-means
 - Unknown K

i.Seni – Q1/04

2

Introduction

What is Cluster Analysis?

· What goes with what?

- Partitioning a data set into groups so that
 - the points in one group are *similar* to each other, and
 - are as different as possible from points in other groups

G.Seni – Q1/04

Introduction

What is Cluster Analysis?

- · Hinges on a notion of distance
- · Unsupervised procedure
 - Use unlabeled samples
- Common applications
 - Segmentation partition the data in a way that is "convenient"
 - E.g., shirt dimensions for S/M/L/XL sizes
 - Exploratory Data Analysis gain insight into the nature or structure of the data
 - E.g., do whiskies fall into distinct subclasses?

G.Seni – Q1/04

4

Introduction

Examples

· Credit card users

- Targeted promotional material
- Chain stores x = [social neighborhood, size, staff numbers,...]^t
 - Identify similar stores
 - Examine distribution of variables within each group

3.Seni - Q1/04

Introduction

What is a "good" cluster?

- · No direct notion of generalization to a test data set
 - The validity of a clustering is often in the eye of the beholder

Introduction

What is a "good" cluster? (2)

- · Invariant to transformations natural to the problem
- · Scaling of variables matters
 - E.g., minimum distance method

 Some variables measure same thing -- e.g., currency, weight, length... better put them in same unit than to re-scale

G Sani - 01/0

Introduction

Types of Cluster Analysis Algorithms

- · Partition-based
 - Find the optimal partition into a specified number of clusters
 - E.g., K-means
- Hierarchical
 - Agglomerative or divisive approach
- Density-based
 - Use probabilistic model for underlying clusters
 - E.g., mixture model $p(\mathbf{x} \mid \theta) = \sum_{k=0}^{K} p(\mathbf{x} \mid \omega_k, \theta_k) P(\omega_k)$

G.Seni – Q1/04

_

Distance Notion

Measures

- · Distance vs. Similarity
 - $d_{ij} = s s_{ij}$ where S is some notion of perfect similarity (e.g., S=I)
- · i.e., distance often refers to a dissimilarity measure
- Typically:
 - -i) $d_{ii} \ge 0$
 - ii) $d_{ii} = 0$
 - iii) $d_{ii} = d_{ii}$
 - metric if: $d_{ij} \leq d_{ik} + d_{kj}$
 - ultra-metric if: $d_{ii} \le \max[d_{ik}, d_{ki}]$

G Seni – OL/B

Distance Notion

Measures for Numerical Data

- Squared Euclidean: $d_{ij} = (x_1^i x_1^j)^2 + (x_2^i x_2^j)^2 + \dots + (x_d^i x_d^j)^2$
- Euclidean Distance: $d_{ij} = \sqrt{(x_1^i x_1^j)^2 + (x_2^i x_2^j)^2 + \dots + (x_d^i x_d^j)^2}$
- Manhattan Distance: $d_{ij} = |x_1^i x_1^j| + |x_2^i x_2^j| + \dots + |x_d^i x_d^j|$
- Camberra Metric: $d_{ij} = \frac{\left|x_1^i x_1^j\right|}{\left|x_1^i\right| + \left|x_1^j\right|} + \frac{\left|x_2^i x_2^j\right|}{\left|x_2^i\right| + \left|x_2^j\right|} + \dots + \frac{\left|x_d^i x_d^j\right|}{\left|x_d^i\right| + \left|x_d^j\right|}$
- $\bullet \quad \text{Correlation Coefficient:} \quad \rho_{ij} = 1 \frac{\sum_{k=1}^{d} (x_k^i \mu_{x'})(x_k^i \mu_{x'})}{\left[\sum_{k=1}^{d} (x_k^i \mu_{x'})^2 \sum_{k=1}^{d} (x_k^i \mu_{x'})^2\right]^{l/2}}$

G.Seni - Q1/04

Distance Notion

Measures for Numerical Data (2)

- · An example from ecology:
 - Abundance of 3 species a 3 sites

	Species 1	Species 2	Species 3
Site s ₁	0	1	1
Site s ₂	1	0	0
Site s ₃	0	4	8

· Dissimilarity values

	d(s ₁ , s ₂)	d(s ₁ , s ₃)	$d(s_2, s_3)$
Square Euclidean	3	58	81
Manhattan	3	10	13
Camberra	3	1.378	3

⇒ The choice of an appropriate measure depends on nature of data

3.Seni – Q1/0

Distance Notion

Measures for Binary Data

- Hamming Distance: $d_{ij} = \#\{k \mid x_k^i \neq x_k^j\}$
- Define

$$x^{i} \left\{ \begin{array}{c|cc} \hline 1 & 0 \\ \hline 1 & a & b \\ \hline 0 & c & d \end{array} \right.$$

then

Name	Dissimilarity	Similarity
Simple Matching	$\frac{b+c}{p}$	$\frac{a+d}{p}$
Jaccard	$\frac{b+c}{a+b+c}$	$\frac{a}{a+b+c}$
Russel Rao	$\frac{b+c+d}{p}$	$\frac{a}{p}$
Dice	$\frac{b+c}{2a+b+c}$	$\frac{2a}{2a+b+c}$
		12

Seni – Q1/04

Distance Notion

Measures for Ordinal & Nominal Data

- Ordinal numerical values but only trust whether $x_k^i < x_k^i$
 - Rank order and normalize: lowest-rank is 0 and highest-rank is 1
 - Conversion to a sequence of binary attributes
 - If feature A has 3 states $a_1,\,a_2,\,a_3$ with $\,a_1 < a_2 < a_3$ we replace A with three binary features

- Nominal
 - $-d_{ii} = k/d$ k is # of features in which x_i and x_i have different states
 - Conversion to a sequence of binary attributes

3.Seni - Q1/04

13

Distance Notion

Measures for Mixed Data

- Divide features into groups: A_n , A_b , A_r , A_o
 - Choose an appropriate dissimilarity measure for each type of feature: $d_{n}, d_{b}, d_{c}, d_{a}$
 - Define

$$d_{ij} = d(x^{i}, x^{j}) = w_{n}d_{n}(x^{i}, x^{j}) + w_{b}d_{b}(x^{i}, x^{j}) + w_{r}d_{r}(x^{i}, x^{j}) + w_{o}d_{o}(x^{i}, x^{j})$$

for some appropriately chosen weight factors

G.Seni - Q1/04

Partition-based Clustering

Overview

- Task partition D={x¹,...,xn} into k disjoint sets of points
 C={C₁,...,C_k} such that the points within each set C_k are
 as "homogeneous" as possible
- Score function captures notion of homogeneity
 e.g., sum of distances between xⁱ and "centroid" of cluster
 to which it is assigned
- Search method iterative improvement heuristic possible allocations of n objects into K groups: Kⁿ

Partition-based Clustering

Score Functions

- J(C) = f(wc(C), bc(C))
 - wc(C) within cluster variation
 - · How compact or tight the clusters are
 - $-\ bc(C)$ between cluster variation
 - How far from each other clusters are
- Sum-of-Squared-Distances Criterion If taking means make sense, $\mu_k = \frac{1}{n_k} \sum_{\mathbf{x} \in C_k} \mathbf{x}$

$$wc(C) = \sum_{k=1}^{K} wc(C_k) = \sum_{k=1}^{K} \sum_{\mathbf{x} \in C_k} d(\mathbf{x}, \mathbf{\mu}_k)^2$$

 $bc(C) = \sum_{1 \le j < k \le K} d(\boldsymbol{\mu}_j, \boldsymbol{\mu}_k)^2$

G.Seni - Q1/04 15

Partition-based Clustering

Basic Algorithm – *K*-means

· Greedy approach

```
Initialize n, K, \mu_l, \mu_2, ..., \mu_K do 

// form clusters for k=l,...,K do  C_k = \{x \in D \mid d(\mu_k, x) \leq d(\mu_j, x) \ \forall j \neq k \}  end 

// compute new cluster centers for k=l,...,K do  \mu_k = vector\ mean\ of\ the\ points\ C_k  end 

until no\ change\ in\ \mu_k
```

ni – Q1/04

Partition-based Clustering

Basic Algorithm – *K*-means (2)

· Example - 2D data

Partition-based Clustering

Basic Algorithm – K-means (3)

- Complexity O(KnI)
 - I: number of iterations. In practice, I << n
- Converges to local minima of *J(C)*
 - different initial centers (seeds) can lead to different solution
- · Bias towards
 - Spherical clusters
 - Equal-sized clusters

J(C) large

Partition-based Clustering

Scatter Criteria

· Within-cluster scatter matrix

$$\mathbf{S}_{w} = \sum_{k=1}^{K} \mathbf{S}_{k}$$
 where $\mathbf{S}_{k} = \sum_{\mathbf{x} \in C_{k}} (\mathbf{x} - \mathbf{\mu}_{k}) (\mathbf{x} - \mathbf{\mu}_{k})^{T}$

• Between-cluster scatter matrix

$$\mathbf{S}_{B} = \sum_{k=1}^{K} n_{k} (\mathbf{\mu}_{k} - \mathbf{\mu}) (\mathbf{\mu}_{k} - \mathbf{\mu})^{\mathsf{Y}}$$

· Total scatter matrix

$$\mathbf{S}_T = \sum_{\mathbf{x} \in D} (\mathbf{x} - \mathbf{\mu})(\mathbf{x} - \mathbf{\mu})^t = \mathbf{S}_W + \mathbf{S}_B$$

- S_T does not depend on the partition \Rightarrow there is an exchange between S_B and S_W matrices: S_B goes up as S_W goes down

• This is fortunate: by minimizing S_W we will also tend to maximize S_B

G.Seni – Q1/

20

G.Seni – Q1/

Partition-based Clustering

Scatter Criteria (2)

- Trace criterion $wc(C) = tr[S_w] = \sum_{k=1}^{K} tr[S_k]$
 - Measures the square of the scattering radius
 - Note that $tr[S_w] = \sum_{k=1}^{K} \sum_{k=1}^{K} ||\mathbf{x} \mathbf{\mu}_k||^2$
 - Because $tr[M] = \sum_{i=1}^{d} \lambda_{i}$
 - · Favors spherical clusters
 - Sensitive to scaling i.e., alter units in a feature and a different cluster structure may result
 - Tendency to produce roughly equal groups

3.Seni - Q1/04

21

Partition-based Clustering

Scatter Criteria (3)

- Determinant criterion $wc(C) = |S_w| = \sum_{k=1}^{K} |S_k|$
 - Measures the square of the scattering volume
 - Because $|M| = \prod_{i=1}^{d} \lambda_i$
 - · Allows elongated clusters
 - · Partition won't change if axes are scaled
 - \Rightarrow preferred under conditions where there may be unknown or irrelevant linear transformation of the data
 - Also favors equal-seized groups

10 mg

22

Partition-based Clustering

Scatter Criteria (4)

- Differences between J(C) become less pronounced for large number of clusters

Partition-based Clustering

Unknown K

- Repeat clustering procedure for K=1, 2,... and see how the criterion function J changes
 - Typically, J decreases monotonically
 - Rapidly until $K = \hat{K}$, thereafter more slowly until it reaches zero

24