Introduction to Pattern Recognition and Data Mining

Lecture 7: Clustering

Instructor:  Dr. Giovanni Seni

Department of Computer Engineering
Santa Clara University

Overview

« Introduction

— What is Cluster Analysis?

» Distance (and similarity) notion

— Measures for numerical data
— Measures for binary data
— Ordinal, nominal, and mixed data

« Partition-based Clustering

— Criterion functions
— K-means
— Unknown K
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Introduction
What is Cluster Analysis?

* What goes with what?
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» Partitioning a data set into groups so that

— the points in one group are similar to each other, and
— are as different as possible from points in other groups

G.Seni— Q104

Introduction
What is Cluster Analysis?

* Hinges on a notion of distance

« Unsupervised procedure

— Use unlabeled samples

« Common applications

— Segmentation — partition the data in a way that is “convenient”

» E.g., shirt dimensions for S/IM/L/XL sizes

— Exploratory Data Analysis — gain insight into the nature or structure
of the data

« E.g., do whiskies fall into distinct subclasses?
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Introduction

Examples
+ Credit card users h

type of purchases g ynE /

total money spent < / 3

x =| frequency of card use = . .
locations of use e m" \ 1 ity
. \\
! ) . : B o
— Targeted promotional material

* Chain stores — x = [social neighborhood, size, staff numbers,...]*
— Identify similar stores

— Examine distribution of variables within each group
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Introduction
What is a “good” cluster?

» No direct notion of generalization to a test data set

— The validity of a clustering is often in the eye of the beholder
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Introduction
What is a “good” cluster? (2)

« Invariant to transformations natural to the problem

« Scaling of variables matters

— E.g., minimum distance method

— Some variables measure same thing -- e.g., currency, weight,
length... better put them in same unit than to re-scale
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Introduction
Types of Cluster Analysis Algorithms

« Partition-based

— Find the optimal partition into a specified number of clusters
— E.g., K-means
» Hierarchical

— Agglomerative or divisive approach

* Density-based

— Use probabilistic model for underlying clusters
K

- E.g., mixture model p(x|0)=>" p(x|®;.6,)P(w,)
k=1
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Distance Notion
Measures

» Distance vs. Similarity
- d; =s—s; where S is some notion of perfect similarity (e.g., S=1)
« i.e., distance often refers to a dissimilarity measure
» Typically:
-0 d,20
i) d,=0
iii) d; =d,
- metricif: d; <d, +d,;

- ultra-metric if. d,; <max[d,,d,]
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Distance Notion

Measures for Numerical Data

+ Squared Euclidean: d, =(x/—x{)’+(x; —x;)* +---+(x) —x})’

+ Euclidean Distance: d, = \/(x/ —x/)* +(xl —x)* +--+(x) -x}’

Manhattan Distance: d, =|x - x/| +[x; = x{|+ -+

)
Xq—Xq

i J
¢ Camberra Metric: d; = ‘ +

P )
. - e u)
« Correlation Coefficient: o, =1- Z“ L

d d 2 )2
[ SR
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Distance Notion
Measures for Numerical Data (2)

* An example from ecology:

— Abundance of 3 species a 3 sites

Species 1 | Species 2 | Species 3
Site s, 0 1 1
Site s, 1 0 0
Site s3 0 4 8

» Dissimilarity values

d(sy, s5) d(sy, s3) d(s,, s3)
Square Euclidean 3 58 81
Manhattan 3 10 13
Camberra 3 1.378 3

= The choice of an appropriate measure depends on nature of data
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Distance Notion
Measures for Binary Data

+ Hamming Distance: 4, :#{k‘ X2}

« Define ¥
—
1 0
1 a b
i
0|c | d
then
Name Dissimilarity Similarity
Simple Matching ";‘ ”:—,”
Jaccard bre 4
a+b+c a+b+c
Russel Rao brevd u
P P
Dice bic 2
2avhic 2athic
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Distance Notion
Measures for Ordinal & Nominal Data

* Ordinal — numerical values but only trust whether x, <x,

— Rank order and normalize: lowest-rank is 0 and highest-rank is 1
— Conversion to a sequence of binary attributes

« Iffeature 4 has 3 states a;, a,, a; with a, < a, < a; we replace 4 with
three binary features

* Nominal —

- d; = k/d - kis # of features in which x; and x; have different states
— Conversion to a sequence of binary attributes
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Distance Notion
Measures for Mixed Data

 Divide features into groups: 4,, 4,, 4,, 4,

— Choose an appropriate dissimilarity measure for each type of
feature: d,, d,, d,, d,

r %o

— Define
d,= d(x’,x’): w,d, (x‘ ,x’ )+ w,d, (x‘ ,x’ )+ w,d, (x‘ ,x! )+ w,d, (x’,x’)

for some appropriately chosen weight factors
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Partition-based Clustering
Overview

» Task — partition D={x/,...,.x"} into k disjoint sets of points
C={C,,....Cy} such that the points within each set C, are
as “homogeneous” as possible

» Score function — captures notion of homogeneity

e.g., sum of distances between x’ and “centroid” of cluster
to which it is assigned

» Search method - iterative improvement heuristic
possible allocations of n objects into K groups: K"
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Partition-based Clustering
Score Functions

* J(©) = fiwe(C), be(C)
— we(C) — within cluster variation
* How compact or tight the clusters are
— be(C) — between cluster variation

» How far from each other clusters are

« Sum-of-Squared-Distances Criterion
If taking means make sense, p, L Zx

k xeCy

wc(C):ﬁ:wc(Ck):i Sdxm,) be(©)= Ydp,.n,)
k=1

k=1 xeCy 1<j<k<K
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Partition-based Clustering
Basic Algorithm — K-means

» Greedy approach

Initialize n, K, g;, ..., gy

do
[/ form clusters
fork=1,...,K do

Cy = {xeD | d(p, %) < d(p, x) Vj=k}

end
/I compute new cluster centers
fork=1,...K do

MW, = vector mean of the points C,
end

until no change in g,
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Partition-based Clustering
Basic Algorithm — K-means (2)

« Example — 2D data

x>
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Partition-based Clustering
Basic Algorithm — K-means (3)

» Complexity O(Knl)

— I : number of iterations. In practice, I<<n

» Converges to local minima of J(C)

— different initial centers (seeds) can lead to different solution

* Bi war
as towards J(C) targe
— Spherical clusters

— Equal-sized clusters

™
' J(C) small
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Partition-based Clustering
Scatter Criteria

« Within-cluster scatter matrix

K
S.=>8, where S, = (x—pSx-n,)
k=1

xeCy

* Between-cluster scatter matrix
K
Sy= an (e =) —n)
k=1
« Total scatter matrix

S; =Z(X*H)(X*H)‘ =S, +8,

xeD

— 8, does not depend on the partiton = there is an exchange
between S, and §,, matrices: S, goes up as S, goes down

« This is fortunate: by minimizing S, we will also tend to maximize S,
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Partition-based Clustering
Scatter Criteria (2)

K
« Trace criterion — we(C) =018, 1= S,]
k=1
— Measures the square of the scattering radius

.
~ Note that #{s,1=3 Y |x-n,[’

o ie,
’
— Because #[M]=) 4,
=
« Favors spherical clusters
« Sensitive to scaling —i.e., alter units in a feature and a different

cluster structure may result

— Tendency to produce roughly equal groups
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Partition-based Clustering
Scatter Criteria (3)

* Determinant criterion — wc(C)=|S,|= i\sk\

k=1

— Measures the square of the scattering volume
‘
— Because [M|=[]4
il
+ Allows elongated clusters

« Partition won’t change if axes are scaled

= preferred under conditions where there may be unknown or
irrelevant linear transformation of the data

- Also favors equal-seized groups
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Partition-based Clustering
Scatter Criteria (4)

« Differences between J(C) become less pronounced for
large number of clusters
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Partition-based Clustering
Unknown K

* Repeat clustering procedure for K=/, 2,... and see how
the criterion function J changes

— Typically, J decreases monotonically

« Rapidly until K = K, thereafter more slowly until it reaches zero

o ; LK
t ;
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